Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:53:05.218Z Has data issue: false hasContentIssue false

A Microstructural Comparison of Cu(In,Ga)Se2 Thin Films Grown from CuxSe and (In,Ga)2Se3 Precursors

Published online by Cambridge University Press:  15 February 2011

Andrew M Gabor
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
J. R. Tuttle
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
D. S. Albin
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
R. Matson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
A. Franz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
D. W. Niles
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
M. A. Contreras
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
A. M. Hermann
Affiliation:
University of Colorado, Boulder, CO 80309–0390
R. Noufi
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80301
Get access

Abstract

We fabricated CulnSe2 and Cu(In,Ga)Se2 thin films by two different pathways using physical vapor deposition. In the first we formed a Cu-Se precursor and then reacted it with a flux of (In,Ga) + Se. These films had large grains but were too rough for optimal device performance. In the other pathway, we first formed a smooth precursor of (In,Ga)2Se3 and then exposed it to a flux of Cu+Se. We overshot the optimal film composition to allow recrystallization of the film by a secondary CuxSe phase. We then consumed the excess CuxSe in a third stage deposition of (In,Ga) + Se. The recrystallization step increased the grain sizes, and the resulting films remained smooth. Photovoltaic solar cells made from these films have produced the highest total-area efficiencies of any non-single-crystal, thin-film solar cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gabor, A. M., Hermann, A. M., Tuttle, J. R., Contreras, M. A., Albin, D. S., Tennant, A., and Noufi, R., Proceedings of the 12th NREL Photovoltaic Program Review Meeeting, edited by Noufi, R. (Amer. Inst. Phys., New York, 1993) (in press).Google Scholar
[2] Hedström, J., Ohlsén, H., Bodegård, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., and Schock, H., Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, (IEEE, New York, 1993), p. 364.Google Scholar
[3] Fearheiley, M. L., Solar Cells 16, 91(1986).Google Scholar
[4] Chen, W. S., Stewart, J. M., Devaney, W. E., Mickelsen, R. A., and Stanbery, B. J., Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, (IEEE, New York, 1993), p. 422.Google Scholar
[5] Tuttle, J. R., Contreras, M., Tennant, A., Albin, D., and Noufi, R., Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY, (IEEE, New York, 1993), p. 415.Google Scholar
[6] Klenk, R., Walter, T., Schock, H. W., and Cahen, D., Advanced Materials 5, 114 (1993).CrossRefGoogle Scholar
[7] Contreras, M. A., et. al., (to be published).Google Scholar
[8] Schmid, D., Ruckh, M., Grunwald, F., and Schock, H. W., J. Appl. Phys. 73, 2902 (1993).Google Scholar
[9] Kessler, J., et. al., Proceedings of the 12th European Photovoltaics Solar Energy Conference, April 1115, 1994, Amsterdam (to be published).Google Scholar
[10] Hernàndez-Rojas, J. L., Lucía, M. L., Màrtil, I.,Gonzalez-Díaz, G., Santamaria, J., and S nchez-Quesada, F., Appl. Phys. Lett. 64, 1239 (1994).CrossRefGoogle Scholar