Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T17:54:14.007Z Has data issue: false hasContentIssue false

Microstructural Aspects of the Ionic Transport Properties of Strontium-Substituted Lanthanum Cobaltites

Published online by Cambridge University Press:  11 February 2011

W. Sitte
Affiliation:
Institute of Physical Chemistry, University of Leoben, A-8700 Leoben, Austria
E. Bucher
Affiliation:
Institute of Physical Chemistry, University of Leoben, A-8700 Leoben, Austria
W. Preis
Affiliation:
Institute of Physical Chemistry, University of Leoben, A-8700 Leoben, Austria
I. Papst
Affiliation:
Research Institute for Electron Microscopy, Graz University of Technology, A-8010 Graz, Austria
W. Grogger
Affiliation:
Research Institute for Electron Microscopy, Graz University of Technology, A-8010 Graz, Austria
F. Hofer
Affiliation:
Research Institute for Electron Microscopy, Graz University of Technology, A-8010 Graz, Austria
Get access

Abstract

The ionic conductivity and microstructure of selected compositions of the solid solution La1-xSrxCoO3-δ (LSC) were examined with respect to possible vacancy ordering phenomena. Homogeneous samples of LSC were prepared by the glycine nitrate process. The ionic conductivity was obtained as a function of the oxygen partial pressure (-3.5 ≤ log[p(O2)/atm] ≤ 0.5) using a recently developed galvanostatic polarization technique. At 825°C the p(O2)-dependence of the ionic conductivity of La1-xSrxCoO3-° (x = 0.4 and 0.6) shows a distinct maximum. Although this behavior has yet to be explained unambiguously it is indicative of decreasing mobility of ionic charge carriers, e. g. due to cooperative vacancy ordering. From the temperature dependence of the ionic conductivity of La1-xSrxCoO3-° (x = 0.6) activation energies at constant nonstoichiometry (0.20 ≤ ° ≤ 0.28) were obtained. As vacancy association and microstructure are presumed to play a significant role we combined the results of ionic conductivity measurements and electron microscopical investigations. HRTEM images revealed a superstructure within microdomains of about 100 nm in size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uchida, H., Arisaka, S., and Watanabe, M., Electrochem. and Solid-State Letters, 2, 428 (1999).Google Scholar
2. Maric, R., Ohara, S., Fukui, T., Yoshida, H., Nishimura, M., Inagaki, T., and Miura, K., J. Electrochem. Soc., 146, 2006 (1999).Google Scholar
3. Mizusaki, J., Tabuchi, J., Matsuura, T., Yamauchi, S., and Fueki, K., J. Electrochem. Soc., 136, 2082 (1989).Google Scholar
4. Petrov, A. N. and Kofstad, P. in Proc. of the 3rd Int. Symp. on Solid Oxide Fuel Cells, edited by Singhal, S. C. and Iwahara, H., (Electrochem. Soc. Proc. 93–4, Pennington, NJ, 1993) pp. 220230.Google Scholar
5. Mitberg, E. B., V Patrakeev, M., Leonidov, I. A., Kozhevnikov, V. L., and Poeppelmeier, K. R., Solid State Ionics, 130, 325 (2000).Google Scholar
6. Lankhorst, M. H. R., Bouwmeester, H. J. M., and Verweij, H., J. Solid State Chem., 133, 555 (1997).Google Scholar
7. Figueiredo, F. M., Marques, F. M. B., and Frade, J. R., Solid State Ionics, 111, 273 (1998).Google Scholar
8. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou, A., Solid State Ionics, 138, 79 (2000).Google Scholar
9. Petrov, A. N., Kononchuk, O. F., Andreev, A. V., Cherepanov, V. A., and Kofstad, P., Solid State Ionics, 80, 189 (1995).Google Scholar
10. van Doorn, R. H. E. and Burggraaf, A. J., Solid State Ionics, 128, 65 (2000).Google Scholar
11. Caciuffo, R., Rinaldi, D., Barucca, G., Mira, J., Rivas, J., Senaris-Rodriguez, M. A., Radaelli, P. G., Fiorani, D., and Goodenough, J. B., Phys. Rev., B59, 1068 (1999).Google Scholar
12. Stemmer, S., Jacobson, A. J., Chen, X., and Ignatiev, A., J. Appl. Phys., 90, 3319 (2001).Google Scholar
13. Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., Materials Lett., 10, 6 (1990).Google Scholar
14. Rom, I., Hofer, F., Bucher, E., Sitte, W., Gatterer, K., Fritzer, H. P., and Popitsch, A., Chem. Mater., 14, 135 (2002).Google Scholar
15. Bucher, E., Benisek, A., and Sitte, W., Solid State Ionics, (2002) (in press).Google Scholar
16. Adler, S., Russek, S., Reimer, J., Fendorf, M., Stacy, A., Baltisberger, J., and Werner, U., Solid State Ionics, 68, 193 (1994).Google Scholar
17. Bucher, E., Sitte, W., Rom, I., Papst, I., Grogger, W., and Hofer, F., Solid State Ionics, (2002) (in press).Google Scholar