Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:38:58.975Z Has data issue: false hasContentIssue false

A Microstructual Analysis of Au/Pd/Ti Ohmic Contacts for GaAs-Based Heterojunction Bipolar Transistors (HJBTs)

Published online by Cambridge University Press:  26 February 2011

Bernard M. Henry
Affiliation:
Department of Materials, Imperial College, London University, London, SW7 2AZ, U.K.
A. E. Staton-Bevan
Affiliation:
Department of Materials, Imperial College, London University, London, SW7 2AZ, U.K.
V. K. M. Sharma
Affiliation:
Department of Materials, Imperial College, London University, London, SW7 2AZ, U.K.
M. A. Crouch
Affiliation:
D.R.A. (Electronics Division), R.S.R.E., St. Andrews Road, Malvern, Worcs., WR14 3PS, U.K.
S. S. Gill
Affiliation:
D.R.A. (Electronics Division), R.S.R.E., St. Andrews Road, Malvern, Worcs., WR14 3PS, U.K.
Get access

Abstract

Au/Pd/Ti and Au/Ti/Pd ohmic structures to thin p+-GaAs layers have been investigated for use as contacts to the base region of HJBTs. The Au/Pd/Ti contact system yielded specific contact resistivities at or above 2.8 × 10−5Ω:cm2. Heat treatments up to 8 minutes at 380°C caused only limited interaction between the metallization and the semiconductor. The metal penetrated to a maximum depth of ≃2nm. Specific contact resistivity values less than 10−5Ωcm2 were achieved using the Au/Ti/Pd (400/75/75nm) scheme. The nonalloyed Au/Ti/Pd contact showed the best combination of electrical and structural properties with a contact resistivity value of 9 × 10≃6Ωcm2 and Pd penetration of the GaAs epilayer to a depth of cs30nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brooks, R. C., Chen, C. L., Chu, A., Mahoney, L. J., Mavroides, J. G., Manfra, M. J. and Finn, M. C., IEEE Electron Device Lett. EDL–6, 525 (1985).Google Scholar
2. Sanada, T. and Wada, O., Jpn. J. Appl. Phys., 19, 491 (1980).Google Scholar
3. Fischer, R. and Morkoc, H., IEEE Electron Device Lett. EDL–7, 359 (1986).CrossRefGoogle Scholar
4. Dubon-Chevallier, C., Gauneau, M., Bresse, J. F., Izrael, A. and Ankri, D., J. Appl. Phys. 59, 3783 (1986).Google Scholar
5. Bruce, R., Clark, D. and Eicher, S., J. Electron. Materials 19. (3), 225 (1990).CrossRefGoogle Scholar
6. Ladany, I. and Marinelli, D.P., RCA Rev. 44, 101 (1983).Google Scholar
7. Su, C.Y. and Stolte, C., Electron. Lett. 19, 891 (1983).Google Scholar
8. Jackson, G. S., Tong, E., Saledas, P., Kazior, T. E., Srague, R., Brooks, R. C. and Hsieh, K. C., Mat. Res. Soc. Symp. Proc. 181, 289 (1990).CrossRefGoogle Scholar
9. Berger, H. H., Solid St. Electron. 15, 145 (1972).Google Scholar
10. Sze, S. M., Physics of Semiconductor Devices, 2nd. edition (J. Wiley-Interscience Publishers, New York, 1981), p. 21.Google Scholar
11. Henry, B. M., Staton-Bevan, A. E., Sharma, V. K. M., Crouch, M. A. and Gill, S. S., to be published.Google Scholar