Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:46:18.479Z Has data issue: false hasContentIssue false

Microscopic Model for the Epitaxy of CaF2 ON Si(111)

Published online by Cambridge University Press:  25 February 2011

F. J. Himpsel
Affiliation:
IBM Thomas J. Watson Research Center, P.O.B. 218, Yorktown Heights, NY 10598, USA
U. O. Karlsson
Affiliation:
IBM Thomas J. Watson Research Center, P.O.B. 218, Yorktown Heights, NY 10598, USA
J. F. Morar
Affiliation:
IBM Thomas J. Watson Research Center, P.O.B. 218, Yorktown Heights, NY 10598, USA
D. Rieger
Affiliation:
IBM Thomas J. Watson Research Center, P.O.B. 218, Yorktown Heights, NY 10598, USA
J. A. Yarmoff
Affiliation:
IBM Thomas J. Watson Research Center, P.O.B. 218, Yorktown Heights, NY 10598, USA
Get access

Abstract

The epitaxy of CaF2 on Si(111) is characterized on an atomic scale using various photoelectron spectroscopy techniques. We find both F and Ca bonding to Si with Ca forming most of the interface bonds. The bonding orbital is found at 1.5 eV below the valence band maximum of Si. It consists of the Si3p-like dangling bond orbital and the 4s electron of Ca1+. Ca has changed its oxidation state at the interface from Ca2+ to Ca1+, which is demonstrated by the multiplet structure of the Ca 2p absorption edge. The electronic properties of the CaF2 interface layer are altered dramatically relative to bulk material, with the band gap shrinking from 12 eV to about 2 eV. Such strong effects raise prospects for creating new materials in the vicinity of an interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Farrow, R. F. C., Sullivan, P. W., Williams, G. M., Jones, G. R., and Cameron, C., J. Vac. Sci. Technol. 19, 415 (1981).CrossRefGoogle Scholar
2. Schowalter, L. J., and R Fathauer, W., J. Vac. Sci. Technol. 4, 1026 (1986).Google Scholar
3. Asano, T., Ishiwara, H., and Furukawa, S., paper A5.1 of this conference.Google Scholar
4. Smith, T. P., Phillips, J. M.. Augustyniak, W. M., Stiles, P. J., Appl. Phys. Lett. 45, 907 (1984); T. Asano, Y. Kuriyama, and H. Ishiwara, Electronics Letters 21, 387 (1985); H. Onoda, M. Sasaki, T. Kato and N. Hiroshita, paper A5.2 of this conference.Google Scholar
5. Himpsel, F. J., Hillebrecht, F. U., Hughes, G., Jordan, J. L., Karlsson, U. O., McFeely, F. R., Morar, J. F., and Rieger, D., Appl. Phys. Lett. 48, 596 (1986).Google Scholar
6. Himpsel, F. J., Karlsson, U. O., Morar, J. F., Rieger, D. and Yarmoff, J. A., Phys. Rev. Lett. 56, 1497 (1986).Google Scholar
7. Rieger, D., Himpsel, F. J., Karlsson, U. O., McFeely, F. R., Morar, J. F., and Yarmoff, J. A., Phys. Rev. B 34, 7295 (1986); U. O. Karlsson, F. J. Himpsel, J. F. Morar, D. Rieger, and J. A. Yarmoff, J. Vac. Sci. Technol 4, 1117 (1986).Google Scholar
8. Marjorie Olmstead, A., Uhrberg, R. I. G., Bringans, R. D., and Bachrach, R. Z., J. Vac. Sci. Technol. B 4, 1123 (1986).Google Scholar
9. Marjorie Olmstead, A., Uhrberg, R. I. G., Bringans, R. D., and Bachrach, R. Z., Phys. Rev. B, in press.Google Scholar
10. Ponce, F. A., Anderson, G. B., and O'Keefe, M. A., J. Vac. Sci. Technol. B 4, 1121 (1986).Google Scholar
11. Vlieg, E., Fischer, A.E.M.J., van der Veen, J. F., Dev, B. N., and Materlik, G., Surface Science, in press; Clausnitzer, M., et al. unpublished work on CaF2 /Si(111).Google Scholar
12. Asano, T. and Ishiwara, H., Appl. Phys. Lett. 42, 517 (1983).Google Scholar
13. Satpathy, S. S., Martin, R. M., private communication. The F-terminated structure used in this work differs from the one shown in Fig. 1 in two respects. It has A-type orientation, and the interface F is located in the open hollow site. Other sites have not been considered yet.Google Scholar
14. Takayanagi, K., Tanishiro, Y., Takahashi, M. and Takahashi, S., J. Vac. Sci. Technol. A 3, 1502 (1985). The correct stacking was first proposed by F. J. Himpsel, Phys. Rev. B27, 7782 (1983).Google Scholar
15. Mansfield, M. W. D., Proc. R. Soc. London, Ser. A 346, 555 (1975); 348 143 (1975).Google Scholar
16. Morar, J. F., McFeely, F. R., Shinn, N. D., Landgren, G., and Himpsel, F. J., Appl. Phys. Lett. 45, 174 (1984); F. R McFeely, J. F. Morar, N. D. Shinn, G. Landgren, and F. J. Himpsel, Phys. Rev. B30, 764 (1984); A. Franciosi, J. H. Weaver, and D. T. Peterson, Phys. Rev. B 31, 3606 (1985).Google Scholar
17. Northrup, J. E., J. Vac. Sci. Technol. A 4, 1404 (1985).Google Scholar
18. Himpsel, F. J., Hollinger, G., and Pollak, R. A., Phys. Rev. B 28, 7018 (1983).Google Scholar
19. Schowalter, L. J. et al., to be published.Google Scholar
20. Karlsson, U. O., Himpsel, F. J., Morar, J. F., McFeely, F. R., Rieger, D., and Yarmoff, J. A., Phys. Rev. Lett. 57, 1247 (1986).Google Scholar
21. Kanemaru, S., Ishiwara, H., and Furukawa, S., paper D4.4 of this conference.Google Scholar
22. Asano, T. and Ishiwara, H., J. Appl. Phys. 55, 3566 (1984).Google Scholar