Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T16:38:56.005Z Has data issue: false hasContentIssue false

A Microscopic Model for the Dielectric Function of Porous Silicon

Published online by Cambridge University Press:  15 February 2011

M. Cruz
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70–360, 04510, México, D.F., MEXICO.
M. R. Beltran
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70–360, 04510, México, D.F., MEXICO.
C. Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70–360, 04510, México, D.F., MEXICO.
J. Tagüeña-Martinez
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70–360, 04510, México, D.F., MEXICO.
Get access

Abstract

Micro and nano-structures have opened a new area in materials research since they present interesting phenomena such as efficient luminescence and localization of carriers. An important example of these new materials is porous silicon (PS). It is considered that the quantum confinement is an essential cause of the opto-electronic properties of PS [1], thus microscopic analysis should be performed. We have developed a supercell model to study PS with a tight-binding Hamiltonian, where an sp3s* basis set is used. In an otherwise perfect silicon structure empty columns of atoms are produced and passivated with hydrogen atoms [2]. In this work we calculate the dielectric function and compare it against experimental data for bulk c-Si, ultrathin c-Si films and PS. We discuss the importance of considering the relaxation of the electron wavevector (k) conservation in order to include disorder effects in PS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Escuela Superior de Ingeniería Mecánica y Eléctrica - UC, IPN, México.

Centro de Investigación en Energia, UNAM, A.P. 34, C.P. 62580, Temixco, Mor., México

References

REFERENCES

[1]Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990);Google Scholar
Cullis, A.G., and Canham, L.T., Nature 353, 335 (1991);Google Scholar
Canham, L.T., Houlton, M.R., Leong, W.Y., Pickering, C., and Keen, J.M., J. Appl. Phys. 70, 422 (1991).Google Scholar
[2]Cruz, M., Wang, C., Beltrán, M.R., and Tagueña-Martínez, J., Phys. Rev. B 53, 3827 (1996).Google Scholar
[3]Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R.R., Muller, F., and Bsiesy, A., Phys. Rev. Lett. 75, 2228 (1995).Google Scholar
[4]Fauchet, P.Porous Silicon: Photoluminescent Devices in Light Emission in Silicon ed. by Lockwood, D., to appear in the Semiconductors and Semimetals Series (Academic Press, New York, 1996).Google Scholar
[5]Koshida, N., Koyama, H., Suda, Y., Yamamoto, Y., Araki, M., Saito, T., and Sato, K., Appl. Phys. Lett. 63, 2774 (1993).Google Scholar
[6]Jellison, G.E., Optical Materials 1, 41 (1992).Google Scholar
[7]Nguyen, H.V., Lu, Y., Kim, S., Wakagi, M., and Collins, R.W., Phys. Rev. Lett. 74, 3880 (1995).Google Scholar
[8]Vogl, P., Hjalmarson, H.P., and Dow, J.D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
[9]Harrison, Walter A., Electronic Structure and the Properties of Solids (Dover Pub., New York, 1989), p. 50 and p. 100.Google Scholar
[10]Ren, Shang Yuan and Dow, John D., Phys. Rev. B 45, 6492 (1992).Google Scholar
[11]Huaxiang, Fu, Ling, Ye, and Xie, Xide, Phys. Rev. B 48, 10978 (1993).Google Scholar
[12]Koiller, B., Osório, R., and Falicov, L.M., Phys. Rev. B 43, 4170 (1991).Google Scholar
[13]Selloni, A., Marsella, P., and Del Sole, R., Phys. Rev. B 33, 8885 (1986).Google Scholar
[14]Brey, L. and Tejedor, C., Solid State Commun. 48, 403 (1983).Google Scholar