Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:22:12.770Z Has data issue: false hasContentIssue false

Microscopic Aspects of the Staebler-Wronski Effect

Published online by Cambridge University Press:  15 February 2011

Martin Stutzmann*
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D- 85748 Garching, Germany, [email protected]
Get access

Abstract

The microscopic origin and the creation mechanisms of metastable, light-induced defects in hydrogenated amorphous silicon are reviewed. Based on excitonic electron-hole pair recombination, a consistent quantitative description of defect creation kinetics can be obtained, including the experimentally observed differences between continuous wave and pulsed illumination as well as the effect of competing recombination pathways in compensated material. High resolution spin resonance spectra obtained by low-field spin-dependent transport are used to examine the interaction of metastable defects with hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977)Google Scholar
2. Staebler, D. L. and Wronski, C. R., J. Appl. Phys. 51, 3262 (1980)Google Scholar
3. Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1980)Google Scholar
4. Hirabayashi, I., Morigaki, K., and Nitta, S., Jpn. J. Appl. Phys. 19, L357 (1980)Google Scholar
5. Stutzmann, M., Rossi, M. C., and Brandt, M. S., Phys. Rev. B50, 11592 (1994)Google Scholar
6. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23 (1985)Google Scholar
7. Han, D.-X. and Fritzsche, H., J. Non-Cryst. Solids 59&60, 397 (1984)Google Scholar
8. McMahon, T. J. and Crandall, R. S., Phys. Rev. B39, 1766 (1989)Google Scholar
9. Brandt, M. S., Asano, A., and Stutzmann, M., Mat. Res. Soc. Symp. Proc. Vol. 297, 201 (1993)Google Scholar
10. Redfield, D. and Bube, R. H., Appl. Phys. Lett. 54, 1037 (1989)Google Scholar
11. Brandt, M. S. and Stutzmann, M., J. Appl. Phys. 75, 2507 (1994)Google Scholar
12. Stutzmann, M., Appl. Phys. Lett. 56, 2313 (1990)Google Scholar
13. Stutzmann, M. and Brandt, M. S., J. Non-Cryst. Solids 141, 97 (1992)Google Scholar
14. Santos, P. V., Johnson, N. M., and Street, R. A., Phys. Rev. Lett. 67, 2686 (1991)Google Scholar
15. Jackson, W. B. and Kakalios, J., Phys. Rev. B 35, 1020 (1988)Google Scholar
16. Pantelides, S. T., Phys. Rev. B36, 3479 (1987)Google Scholar
17. Adler, D., Solar Cells 9, 133 (1983)Google Scholar
18. Morigaki, K., Jpn. J. Appl. Phys. 27, 163 (1988)Google Scholar
19. Zhang, S. B., Jackson, W. B., and Chadi, D. J., Phys. Rev. Lett. 65, 2575 (1990)Google Scholar
20. Carlson, D. E., Appl. Phys. A41, 305 (1986)Google Scholar
21. Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B47, 7013 (1993)Google Scholar
22. Brandt, M. S., Graeff, C. F. O., and Stutzmann, M., to be published.Google Scholar