Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T14:35:17.905Z Has data issue: false hasContentIssue false

Microscopic Analysis of Organic Solar Cells by Simultaneous Measurements of ESR and Device Performance

Published online by Cambridge University Press:  09 January 2014

Kazuhiro Marumoto
Affiliation:
Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama 322-0012, Japan Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
Tatsuya Nagamori
Affiliation:
Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Masaki Yabusaki
Affiliation:
Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Get access

Abstract

Light-induced electron spin resonance (LESR) study of polymer solar cells has been performed to investigate accumulated hole carriers in these devices under device operation. We analyzed clear correlation between the number of accumulated holes in regioregular poly(3-hexylthiophene) (P3HT) evaluated by LESR and the deterioration of device performance (Voc, Jsc) observed using the same device under simulated solar irradiation. The effects of hole accumulation with deep trapping levels formed in P3HT at the organic interfaces on the performance are examined by considering interfacial electric dipole layers and charge-carrier scattering by accumulated holes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brabec, C. J., Sol. Energy Mater. Sol. Cells 83, 273 (2004).CrossRefGoogle Scholar
Kopola, P., Aernouts, T., Sliz, R., Guillerez, S., Ylikunnari, M., Cheyns, D., Valimaki, M., Tuomikoski, M., Hast, J., Jabbour, G., Myllylä, R. and Maaninen, A., Sol. Energy Mater. Sol. Cells 95, 1344 (2011).CrossRefGoogle Scholar
Kaltenbrunner, M., White, M. S., Głowacki, E. D., Sekitani, T., Someya, T., Sariciftci, N. S. and auer, Nature Commun. 3, 770 (2012).CrossRefGoogle Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, D., Prog. Photovolt: Res. Appl. 20, 12 (2012).CrossRefGoogle Scholar
Kawano, K. and Adachi, Adv. Funct. Mater. 19, 3934 (2009).CrossRefGoogle Scholar
Yamanari, T., Ogo, H., Taima, T., Sakai, J., Tsukamoto, J. and Yoshida, Y., in 2010 35th IEEE Photovoltaic Specialist Conf. (PVSC), IEEE, p. 001628 (2010).CrossRefGoogle Scholar
Marumoto, K., Kuroda, S., Takenobu, T. and Iwasa, Y., Phys. Rev. Lett. 97, 256603 (2006).CrossRefGoogle Scholar
Tsuji, M., Takahashi, Y., Sakurai, Y., Yomogida, Y., Takenobu, T., Iwasa, Y. and Marumoto, K., Appl. Phys. Lett. 102, 133301 (2013).CrossRefGoogle Scholar
Marumoto, K., Fujimori, T., Ito, M. and Mori, T., Adv. Energy Mater. 2, 591 (2012).CrossRefGoogle Scholar
Nagamori, T. and Marumoto, K., Adv. Mater. 25, 2362 (2013).CrossRefGoogle Scholar
Ishii, H., Sugiyama, K., Ito, E. and Seki, K., Adv. Mater. 11, 605 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
Cheyns, D., Poortmans, J., Heremans, P., Deibel, C., Verlaak, S., Rand, B. P. and Genoe, J., Phys. Rev. B 77, 165332 (2008).CrossRefGoogle Scholar
Jung, J. W. and Jo, W. H., Adv. Funct. Mater. 20, 1 (2010).Google Scholar
Brinkmann, M. and Wittmann, J.-C., Adv. Mater. 18, 860 (2006).CrossRefGoogle Scholar
Harada, K., Li, F., Maenning, B., Pfeiffer, M. and Leo, K., Appl. Phys. Lett. 91, 092118 (2007).CrossRefGoogle Scholar
Watanabe, S., Tanaka, H., Kuroda, S., Toda, A., Nagano, S., Seki, T., Kimoto, A. and Abe, J., Appl. Phys. Lett. 96, 173302 (2010).CrossRefGoogle Scholar