Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:33:02.443Z Has data issue: false hasContentIssue false

Micro-Raman Scattering From Hexagonal GaN, AlN, and AlxGa1-xN Grown on (111) Oriented Silicon: Stress Mapping of Cracks

Published online by Cambridge University Press:  21 March 2011

C. Ramkumar
Affiliation:
Department of Physics and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
T. Prokofyeva
Affiliation:
Department of Physics and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
M. Seon
Affiliation:
Samsung Advanced Technology, Samsung Corporation, P.O. Box 111, Suwon 440-600, South Korea.
M. Holtz
Affiliation:
Department of Physics and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
K. Choi
Affiliation:
Department of Electrical Engineering and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
J. Yun
Affiliation:
Department of Electrical Engineering and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
S. A. Nikishin
Affiliation:
Department of Electrical Engineering and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
H. Temkin
Affiliation:
Department of Electrical Engineering and NanoTech Center, Texas Tech University, Lubbock, TX 79409, U.S.A.
Get access

Abstract

We report post-growth micro-Raman stress mapping of cracks in GaN, AlN, and AlxGa1-xN grown on (111) oriented silicon. Cracks with an average spacing of ~ 100 m are observed. These cracks are categorized into two types. The first type of crack propagates through the epilayer, and several microns deep into the substrate and is observed in all the samples investigated. The second type cracks epilayer only and is observed only in GaN. The micro-Raman stress mapping of the first type of crack shows that the epilayers are under biaxial tensile (< 0) stress and the silicon substrate is under compressive (> 0) stress far away from the cracks. The stress in the epilayers as well the substrate is found to relax from the equilibrium (far away from the cracks) value of –0.5 GPa (AlN), -0.16 GPa (GaN), -0.6 GPa (AlxGa1-xN) and 0.36 GPa (Si) as the crack position is approached. Partial relaxation is observed to occur over a range of 10 m m. At the crack position, the epilayers and the substrate are relaxed to nearly zero stress values. The stress mapping of the second type of crack reveals that the substrate is completely relaxed (stress is close o zero) far away from the cracks. At the crack position the GaN epilayer is partially relaxed from –0.2 GPa to –0.08 GPa, while the silicon substrate is seen to be under tensile stress of –0.39 GPa. The stress map of epilayers is well described by the distributed force model for both types of cracks. Furthermore, the calculated stress profiles of cracked and uncracked substrate using the above mentioned model are in excellent agreement with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
2. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J. W., Jones, E., Liliental, Z. Weber, Rubin, M., Weber, E. R., Bremser, M. D., and Davis, R. F., Phys. Rev. B 54, 17745 (1996).Google Scholar
3. Prokofyeva, T., Seon, M., Vanbuskirk, J., Holtz, M., Nikishin, S. A., Faleev, N. N., Temkin, H., and Zollner, S., Phys. Rev. B 63, 125313 (2001).Google Scholar
4. Nikishin, S. A., Faleev, N. N., Antipov, V. G., Francoeur, S., Peralta, L. Grave de, Seryogin, G. A., Temkin, H., Prokofyeva, T. I., Holtz, M., and Chu, S. N. G., Appl. Phys. Lett. 75, 2073 (1999).Google Scholar
5. Nikishin, S. A., Antipov, V. G., Francoeur, S., Faleev, N. N., Seryogin, G. A., Elyukhin, V. A., Temkin, H., Prokofyeva, T. I., Holtz, M., Konkar, A., and Zollner, S., Appl. Phys. Lett. 75, 484 (1999).Google Scholar
6. Semond, F., Lorenzini, P., Grandjean, N., and Massies, J., Appl. Phys. Lett. 78, 335 (2001).Google Scholar
7. Hearne, S. J., Han, J., Lee, S. R., Floro, J. A., Foolstaedt, D. M., Chason, E., and Tsong, I. S. T., Appl. Phys. Lett. 76, 1534 (2000).Google Scholar
8. Romano, L. T., Walle, C. G. Van de, Ager, J. W., Götz, W., and Kern, R. S., J. Appl. Phys. 87, 7745 (2000).Google Scholar
9. Etzkorn, E. V. and Clarke, D. R., J. Appl. Phys. 89, 1025 (2001).Google Scholar
10. Hu, S. M., J. Appl. Phys. 50, 4661 (1979).Google Scholar
11. Atkinson, A., Johnson, T., Harker, A. H., and Jain, S. C., Thin Solid Films 274, 106 (1996).Google Scholar
12. Follstaedt, D. M., Han, J., Provencio, P., and Fleming, J. G., MRS Internet J. Nitride Semicond. Res. 4S1, G3.72 (1999).Google Scholar
13. Seon, M., Prokofyeva, T., Holtz, M., Nikishin, S. A., Faleev, N. N., and Temkin, H., Appl. Phys. Lett. 76, 1842 (2000).Google Scholar
14. Siegle, H., Thurian, P., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Amano, H., Akasaki, I., Detchprohm, T., and Hiramatsu, K., Appl. Phys. Lett. 68, 1265 (1996).Google Scholar
15. Lee, I. H., Choi, I. H., Lee, C. R., Shin, E. J., Kim, D., Noh, S. K., Son, S. J., Lim, K. Y., and Lee, H. J., J. Appl. Phys. 83, 5787 (1998).Google Scholar
16. Wolf, I. De, Vanhellemont, J., Romano-Rodríguez, A., Norström, H., and Maes, H. E., J. Appl. Phys. 71, 898 (1992).Google Scholar
17. Davydov, V. Yu., Kitaev, Yu. E., Goncharuk, I. N., Smirnov, A. N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P., and Evarestov, R. A., Phys. Rev. B 58, 12899 (1998).Google Scholar
18. Gerlich, D., Dole, S. L., and Slack, A., J. Phys. Chem. Solids 47, 437 (1986).Google Scholar
19. Anastassakis, E., Cantarero, A., and Cardona, M., Phys. Rev. B 41, 7529 (1990).Google Scholar