Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T07:10:12.315Z Has data issue: false hasContentIssue false

The “Micromorph” Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?

Published online by Cambridge University Press:  15 February 2011

H. Keppner
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
P. Torres
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Meier
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
R. Platz
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
D. Fischer
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
U. Kroll
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
S. Dubail
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. A. Anna Selvan
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Pellaton Vaucher
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
Y. Ziegler
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
R. Tscharner
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
Ch. Hof
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Beck
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
M. Goetz
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
P. Pernet
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
M. Goerlitzer
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
N. Wyrsch
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Veuille
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Cuperus
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
A. Shah
Affiliation:
Institut de Microtechnique, A.-L. Breguet 2, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Pohl
Affiliation:
University of Konstanz, D-78434 Konstanz, Germany
Get access

Abstract

In the past, microcrystalline silicon (μc-Si:H) has been successfully used as active semiconductor in entirely μc-Si:H p-i-n solar cells and a new type of tandem solar cell, called the “micromorph” cell, was introduced [1]. Micromorph cells consist of an amorphous silicon top cell and a microcrystalline bottom cell. In the paper a micromorph cell with a stable efficiency of 10.7 % (confirmed by ISE Freiburg) is reported.

Among sofar existing crystalline silicon-based solar cell manufacturing techniques, the application of microcrystalline silicon is a new promising way towards implementing thin-film silicon solar cells with a low temperature deposition. Microcrystalline silicon can, indeed, be deposited at temperatures as low as 220°C; hence, the way is here open to use cheap substrates as, e.g. plastic or glass. In the present paper, the development of single and tandem cells containing microcrystalline silicon is reviewed. As stated in previous publications, microcrystalline silicon technique has at present a severe drawback that has yet to be overcome: Its deposition rate for solar-grade material is about 2Å/s; in a more recent case 4.3 Å/s [2] could be obtained. In the present paper, using suitable mixtures of silane, hydrogen and argon, deposition rates of 9.4 Å/s are presented. Thereby the dominating plasma mechanism and the basic properties of resulting layers are described in detail. A first entirely microcrystalline cell deposited at 8.7 Å/s has an efficiency of 3.15%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meier, J., Flückiger, R., Keppner, H., Shah, A., Appl. Phys. Lett., Vol. 65 (7), pp. 860862, 1994.Google Scholar
2.Torres, P., Meier, J., Goetz, M., Beck, N., Kroll, U., Keppner, H., Shah, A., this conference.Google Scholar
3.Veprek, S. and Mareek, V., Solid State Electronics Nr. 11, p. 683, 1968.Google Scholar
4.Wang, C. and Lucowsky, G., Proc. 21st IEEE Photovoltaic Specialists Conference, Orlando 1990, Vol. 2, pp 16141618.Google Scholar
5.Faraj, M., Gokhale, S., Choudhari, S. M., and Takwale, M. G., Appl. Phys. Lett. 60, p. 3289, 1992.Google Scholar
6.Flückiger, R., Meier, J., Keppner, H., Kroll, U., Shah, A., Greim, O., Morris, M., Pohl, J., Hapke, P., Carius, R., Proceedings of the 11th EC Photovoltaic Solar Energy Conference, Montreux, 1992, p. 617.Google Scholar
7.Meier, J., Dubail, S., Fischer, D., Anna Selvan, J. A., Pellaton Vaucher, N., Platz, R., Hof, C., Flückiger, R., Kroll, U., Wyrsch, N., Torres, P., Keppner, H., Shah, A., Ufert, K.-D., Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Nice, 1995, p. 1445.Google Scholar
8.Meier, J., Dubail, S., Flückiger, R., Fischer, D., Keppner, H., Shah, A., Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, kHawaii, 1994, Vol. 1, pp. 409412.Google Scholar
9.Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Anna Selvan, J.A., Pellaton-Vaucher, N., Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoulès, P., Koehler, J., to be published in the Proc. MRS 1996 Spring Meeting San Francisco.Google Scholar
10.Fischer, D., Dubail, S., Anna Selvan, J.A., Pellaton-Vaucher, N., Platz, R., Hof, Ch., Kroll, U., Meier, J., Torres, P., Keppner, H., Wyrsch, N., Goetz, M., Shah, A., Ufert, K.-D., Proc. 25th IEEE Photovoltaic Specialists Conference, Washington, 1996, Vol. 2 pp. 10531056.Google Scholar
11.Veprek, S., Iqbal, Z., Kühne, R. O., Capezzuto, P., Sarott, F-A and Gimzewski, J. K., J. Phys. C: Solid State Physics, 16, pp. 62416262, 1983.Google Scholar
12.Kroll, U., Meier, J., Keppner, H., and Shah, A., J. Vac. Sci. Technol. A 13(6) p. 2742, 1995.Google Scholar
13.Finger, F., Hapke, P., Lysberg, M., Carius, R., Wagner, H., Appl. Phys. Lett. 65(20), p. 247, 1994.Google Scholar
14.Matsuda, A., Mashima, S., Hasezaki, K., Suzuki, A., Yamasaki, S. and McElhenny, P.J., Appl. Phys. Lett., 58, p. 2494, 1991.Google Scholar
15.Kroll, U., PhD thesis University of Neuchâtel, Hartung & Gorre Verlag, Konstanz, ISBN 3–89191–905–0, 1995.Google Scholar
16.Hautala, J., Saleh, Z., Westendorp, J.F.M., Meiling, H., Sherman, S., and Wagner, S., to be published in the Proceedings of the MRS Spring Meeting, San Francisco, Vol. 420, 1996.Google Scholar
17.Imajyo, N., J. of Non-Cryst. Solids, 198–200, pp. 935939, 1995.Google Scholar
18.Sansonnens, L., Howling, A.A., Hollenstein, Ch., Dorier, J-L., and Kroll, U., J. Phys. D: Appl. Phys. 27, pp 14061411, 1994.Google Scholar
19.Das, U. K. and Chaudhuri, P., Kshirsagar, S.T., J. Appl. Phys. 80(9) pp. 53895397, 1996.Google Scholar
20.Perrin, J., Schmitt, J., Chem. Phys. 67, p. 167, 1982.Google Scholar
21.Hamasaki, T., Kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett. 37, p. 1084, 1980.Google Scholar
22.Middya, A. R., Guillet, J., Perrin, J., Lloret, A., and Bourrée, J. E., Proceedings of the 13th EC PV Conference, Nice, 1995, p. 1704.Google Scholar
23.Ferreira, C. M. and Loureiro, J., J. Appl. Phys. 57(1), p. 82, 1985.Google Scholar
24.Kushner, M. J., J. Appl. Phys. 63(8), p. 2532, 1988.Google Scholar
25.Veprek, S., Sarrott, F. -A. and Rambert, S., Taglauer, E., J. Vac. Sci. Technol. A 7(4) p. 2614, 1989.Google Scholar
26.Heintze, M. and Zedlitz, R., Progress in Photovoltaics: Research and applications, 1, p. 213, 1993.Google Scholar
27.Keppner, H., Kroll, U., Torres, P., Meier, J., Platz, R., Fischer, D., Beck, N., Dubail, S., Anna Selvan, J.A., Pellaton Vaucher, N., Goerlitzer, M., Ziegler, Y., Tscharner, R., Hof, Ch., Goetz, M., Pernet, P., Wyrsch, N., Vuille, J., Cuperus, J., and Shah, A., to be published at the NREL/SNL Photovoltaics Program review Meeting, Lakewood Co, 1996.Google Scholar
28.Kroll, U., Meier, J., Shah, A., Mikahaiov, S., Weber, J., J. Appl. Phys. 80, p. 4971, 1996.Google Scholar
29.Velazco, J. E., Kolts, J. H., Setser, D. W., J. Chem. Phys., 69(10), p. 4357, 1978.Google Scholar