Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:05:41.513Z Has data issue: false hasContentIssue false

Micromechanisms of deformation in γ-TiAl

Published online by Cambridge University Press:  11 February 2011

Patrick Veyssière
Affiliation:
LEM, CNRS-ONERA, BP 72, 92322 Châtillon cedex, France.
Yu-Lung Chiu
Affiliation:
LEM, CNRS-ONERA, BP 72, 92322 Châtillon cedex, France.
Fabienne Grégori
Affiliation:
LPMTM, Institut Galilée, 99 Av. J. B. Clément, 93430 Villetaneuse, France.
Get access

Abstract

Investigations conducted in our group on plastic properties of a variety of strained TiAl based alloys and resulting microstructures are reviewed. These include oriented single crystals of Al-rich γ-TiAl and semi-oriented polycrystals with γ + α2 lamellar structure. The wealth of micro-mechanisms encountered in this family of alloys is, to large extent, due to the decomposition of <011] dislocations: <011] ↔ 1/2<112] + 1/2<110]. This transformation sometimes introduces serious uncertainties as to which slip systems were actually operating during deformation. Another transformation involving decomposition is the formation of intralamellar networks during deformation. Mechanisms not involving decomposition include the trailing of faulted dipoles by <011] dislocations and the generation of arrays of prismatic loops of ordinary dislocations. The latter maneuver is at the origin of fundamental processes such as self-organisation in single slip in a variety of crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Viguier, B., Ph.D. Thesis, University of Lausanne (1995).Google Scholar
2. Viguier, B., Hemker, K. J., Bonneville, J., Louchet, F. and Martin, J.-L.. Phil. Mag. A, 1995. 71: p. 1295.Google Scholar
3. Louchet, F. and Viguier, B.. Phil. Mag. A, 1995. 71(6): p. 1313.Google Scholar
4. Louchet, F. and Viguier, B.. Phil. Mag. A, 2000. 80(4): p. 765.Google Scholar
5. Sriram, S., Dimiduk, D. M., Hazzledine, P. M. and Vasudevan, V. K.. Phil. Mag. A, 1997. 76: p. 965.Google Scholar
6. Jiao, S., Bird, N., Hirsch, P. B. and Taylor, G., in High Temperature Ordered Intermetallics VIII, George, E. P., Mills, M. J. and Yamaguchi, M., Editors. 1999, Materials Research Society: Warrendale, PA. p. KK8.11.11–KK.18.11.15.Google Scholar
7. Jiao, S., Bird, N., Hirsch, P. B. and Taylor, G.. Phil. Mag. A, 2001. 81(1): p. 213.Google Scholar
8. Zghal, S., Menand, A. and Couret, A.. Acta Mater., 1998. 46(16): p. 5899.Google Scholar
9. Hug, G., Loiseau, A. and Veyssière, P.. Phil. Mag. A, 1988. 57: p. 499.Google Scholar
10. Messerschmidt, U., Bartsch, M., Haüssler, D., Aindow, M., Hattenhauer, R. and Jones, I. P., in High-Temperature Ordered Intermetallic Alloys VI, Horton, J. A., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S., Editors. 1995, Materials Research Society: Pittsburgh, PA. p. 4752.Google Scholar
11. Nakano, T., Hagihara, K., Seno, T., Sumida, N., Yamamoto, M. and Umakoshi, Y.. Phil. Mag. A, 1998. 78(5): p. 385.Google Scholar
12. Nakano, T., Matsumoto, K., Seno, T., Oma, K. and Umakoshi, Y.. Phil. Mag. A, 1996. 74(1): p. 251.Google Scholar
13. Grégori, F., Ph.D. Thesis, University of Paris VI (1999).Google Scholar
14. Grégori, F. and Veyssière, P., in Gamma Titanium Aluminides, Kim, Y.-W., Dimiduk, D. M. and Loretto, M. H., Editors. 1999, Minerals, Metals & Materials Society: Warrendale. p. 7582.Google Scholar
15. Inui, H., Matsumoro, M., Wu, D.-W. and Yamaguchi, M.. Phil. Mag. A, 1997. 75: p. 395.Google Scholar
16. Jiao, S., Bird, N., Hirsch, P. B. and Taylor, G.. Phil. Mag. A, 1998. 78(3): p. 777.Google Scholar
17. Jiao, S., Bird, N., Hirsch, P. B. and Taylor, G.. Phil. Mag. A, 1999. 79(3): p. 609.Google Scholar
18. Grégori, F., Penhoud, P. and Veyssière, P.. Phil. Mag. A, 2001. 81(3): p. 529.Google Scholar
19. Veyssière, P.. Mat. Sci. Engng, 2001. A309–310: p. 44.Google Scholar
20. Hug, G., Ph.D. Thesis, University of Paris-Sud (Orsay) (1988).Google Scholar
21. Saada, G. and Couret, A.. Phil. Mag. A, 2001. 81(9): p. 2109.Google Scholar
22. Couret, A., Calderon Benavides, H. A. and Veyssière, P.. Phil. Mag. A, 2002: p. submitted.Google Scholar
23. Kishida, K., Inui, H. and Yamaguchi, M.. Phil. Mag. A, 1998. 78(1): p. 1.Google Scholar
24. Hug, G., Loiseau, A. and Lasalmonie, A.. Phil. Mag. A, 1986. 54(1): p. 47.Google Scholar
25. Inkson, B. J.. Phil. Mag. A, 1998. 77(3): p. 715.Google Scholar
26. Grégori, F. and Veyssière, P.. Phil. Mag. A, 2000. 80(12): p. 2933.Google Scholar
27. Greenberg, B. A., Antonova, O. A., Indenbaum, V. N., Karkina, L. E., Notkin, A. B., Ponomarev, M. V. and Smirnov, L. V.. Acta metall. mater, 1991. 39(2): p. 233.Google Scholar
28. Viguier, B. and Hemker, K. J.. Phil. Mag. A, 1996. 73(3): p. 575.Google Scholar
29. Grégori, F. and Veyssière, P., in High Temperature Ordered Intermetallics IX, Schneibel, J. H., Noebe, R. D., Hanada, S., Hemker, K. J. and Sauthoff, G., Editors. 2001, MRS: Warrendale, PA.Google Scholar
30. Grégori, F. and Veyssière, P.. Phil. Mag. A, 2000. 80(12): p. 2913.Google Scholar
31. Chiu, Y.-L., Inui, H., Nakano, T. and Veyssière, P.. p. in preparation.Google Scholar
32. Hug, G. and Veyssière, P., in Gamma titanium aluminides, Kim, Y.-W., Wagner, R. and Yamaguchi, M., Editors. 1996, TMS: Warrendale. p. 291298.Google Scholar
33. Chiu, Y.-L., Grégori, F., Nakano, T., Umakoshi, Y. and Veyssière, P.. Phil. Mag. A, 2002: p. in press.Google Scholar
34. Grégori, F. and Veyssière, P.. Phil. Mag. A, 2002. 82(3): p. 553.Google Scholar
35. Veyssière, P. and Grégori, F.. Phil. Mag. A, 2002. 82(3): p. 567.Google Scholar
36. Veyssière, P. and Grégori, F.. Phil. Mag. A, 2002. 82(3): p. 579.Google Scholar
37. Veyssière, P.. Phil. Mag. Lett., 2001. 81(11): p. 733.Google Scholar
38. Veyssière, P. and Grégori, F.. Phil. Mag. Lett., 2001. 81(12): p. 795.Google Scholar