Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:42:09.049Z Has data issue: false hasContentIssue false

Micromechanical Stress Sensors for Electrochemical Studies

Published online by Cambridge University Press:  10 February 2011

T. A. Brunt
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
W. F. Ip
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
T. Rayment
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
S. J. O'Shea
Affiliation:
Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
M. E. Weiland
Affiliation:
Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
Get access

Abstract

Cantilevers developed for atomic force microscopy can be used to construct sensitive thermal and stress sensors. We have shown how the stress changes which accompany deposition and desorption may be measured on single crystal electrodes. In this work we describe the surface stress changes associated with three processes: the electrodeposition of Pb and I and desorption of self assembled thiol monolayers on the Au(111) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cammarata, R.C., Prog. Surf. Sci., 46, p. 138 (1994),Google Scholar
Ibach, H.J., Vac. Sci. Technol. A 12, p.22402243 (1994).Google Scholar
[2] Grossmann, A., Erley, W., and Ibach, H., Surf Sci. 337, p. 183189 (1995).Google Scholar
[3] Schell-Sorokin, A.J., and Tromp, R.M., Phys. Rev. Lett. 64, p. 10391042 (1990).Google Scholar
[4] Brunt, T.A., Chabala, E.D., Rayment, T., O'Shea, S.J., Weiland, M.E., J. Chem. Soc. Faraday Trans., 92, p. 38073812 (1996).Google Scholar
[5] Fredlein, R.A., Damjanovic, A., and O'mbockris, J., Surf. Sci. 25, 261264, (1971)Google Scholar
[6] Raiteri, R., and Butt, H-J., J. Phys Chem. 99, p. 1572815732, (1995).Google Scholar
[7] Haiss, W., and Sass, J.K, J. Electroanal. Chem. 386, p. 267270, (1995).Google Scholar
[8] O'Shea, S.J., Weiland, M.E., Brunt, T.A., Ramadan, A.R., and Rayment, T., J Vac. Sci. Technol. B 14, p. 13831385(1996).Google Scholar
[9] Schell-Sorokin, A.J., and Tromp, R.M., Surf. Sci. 335, p. 204209 (1994)Google Scholar
[10] Sader, J.E., Larson, I., Mulvaney, P., and White, L.R., Rev. Sei. Instrum. 66, p. 37893798 (1995).Google Scholar
[11] Chen, C.H., Washburn, N., and Gewirth, A.A., J. Phys. Chem. 97, p. 97549760 (1993)Google Scholar
[12] Toney, M.F., Gordon, J.G., Samant, M.G., Borges, G.L., Melroy, O.R., Yee, D., and Sorensen, L.B, J. Phys. Chem. 99, p. 47334744 (1995)Google Scholar
[13] Brunt, T.A, Rayment, T., O'Shea, S.J. and Weiland, M.E., Langmuir in press 1996 Google Scholar
[14] Hepel, M., Kanige, K. and Bruckenstein, S., Langmuir 6, p. 10631067 (1990).Google Scholar
[15] Ocko, B.M., Watson, G.M. and Wang, J., J. Phys. Chem. 98, p. 897 -906 (1994).Google Scholar
[16] Sondag-Huethorst, J.A.M. and Fokkink, L.G.J., J. Electroanal. Chem. 367, p. 4957 (1994)Google Scholar
[17] Widrig, C.A., Chung, C. and Porter, M.D., J. Electroanal. Chem. 310, p. 335359 (1991)Google Scholar