Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:39:30.684Z Has data issue: false hasContentIssue false

Micro-Ftir and Theoretical Study of C60 Single-Crystal Vibrational Modes

Published online by Cambridge University Press:  15 February 2011

G. Guizzetti
Affiliation:
Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 1-27100 Pavia, Italy
F. Marabelli
Affiliation:
Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 1-27100 Pavia, Italy
M. Patrini
Affiliation:
Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 1-27100 Pavia, Italy
M. Manfredini
Affiliation:
Dipartimento di Fisica and INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy
P. Milani
Affiliation:
Dipartimento di Fisica and INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy
G. Benedek
Affiliation:
Dipartimento di Fisica and INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy
S. Sanguinetti
Affiliation:
Dipartimento di Fisica and INFN, Università di Milano, Via Celoria 16, 1-20133 Milano, Italy
Get access

Abstract

Reflectance (R) and trasmittance (T) of C60 single-crystals have been measured in the 400-5000 cm-1 range, at room temperature, by using micro-Fourier transform IR spectroscopy. The frequencies of the peaks, appearing in both R and T spectra, are compared with the IR active ones calculated for the simple cubic structure with the bond charge model. It appears that all modes which are expected from symmetry arguments to give a dipole activity are actually observed and the corresponding frequencies are in good agreement with the experimental findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, G., Dresselhaus, M.S. and Eklund, P.C., Phys. Rev. B 45, 6923 (1992).Google Scholar
2. Bowmar, P., Kurmoo, M., Green, M.A., Pratt, F.L., Hayes, W., Day, P., Kikuchi, K., J. Phys. C 5, 2739 (1993).Google Scholar
3. Bowmar, P., Hayes, W., Kurmoo, M., Pattenden, P.A., Green, M.A., Day, P., IKikuchi, K., J. Phys. C 6, 3161 (1994).Google Scholar
4. Heiney, P.A., J. Phys. Chem. Solids 53, 1333 (1992).Google Scholar
5. Milani, P., Manfredini, M., Guizzetti, G., Marabelli, F., Patrini, M., Solid State Commun. 90, 639 (1994).Google Scholar
6. Patrini, M., Marabelli, F., Guizzetti, G., Manfredini, M., Castoldi, C., Milani, P., in Recent advances in the chemistry and physics of fullerenes and related materials ed. by Kadish, K.M. and Ruoff, R.S., The Electrochem. Soc. Inc. (Pennington, N.J.), 1994.Google Scholar
7. Onida, G. and Benedek, G., Europhys. Lett. 18, 403 (1992).Google Scholar
8. Sanguinetti, S., Benedek, G., Righetti, M. and Onida, G., Phys. Rev. B 50, 6743 (1994).Google Scholar
9. Benedek, G. and Onida, G., in Fullerenes: Status and Perspectives ed. by Ruani, G., Taliani, C. and Zamboni, R., Word Scientific (Singapore), 1992.Google Scholar