Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:47:38.268Z Has data issue: false hasContentIssue false

Microchemistry of Proton-Irradiated Austenitic Alloys Under Conditions Relevant to Lwr Core Components

Published online by Cambridge University Press:  15 February 2011

G. S. Was
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109, [email protected]
T. R. Allen
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
J. T. Busby
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
J. Gan
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
D. Damcott
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
D. Carter
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
M. Atzmon
Affiliation:
Nuclear Engineering and Radiological Sciences Department, University of Michigan, Ann Arbor, MI 48109
E. A. Kenik
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
Get access

Abstract

Over 1200 measurements of grain boundary composition and microstructure have been made on 14 different austenitic Fe-Cr-Ni alloys following proton irradiation in the temperature range 200-600°C and in the dose range 0.1-3.0 dpa. Grain boundary composition measurements revealed that Cr depletes at grain boundaries, Ni enriches and Fe can either enrich or deplete depending on alloy composition. Analysis of temperature and composition dependence of RIS revealed that the magnitude and direction of grain boundary segregation depends on alloy composition because the value of migration enthalpy differs among the alloy constituents, and diffusivities of the alloy constituents are composition-dependent. The dose dependence of segregation revealed ordering in Ni-base alloys and temperature dependence was used to show that RIS occurs by vacancy exchange rather than an interstitial binding mechanism. The dependence of segregation on composition is consistent with all known, relevant neutron data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Damcott, D., Cookson, J., Rotberg, V. and Was, G. S., Nucl. Instr. Meth. B 99, p.780, (1995).Google Scholar
2 Allen, T. R., Ph.D. Thesis, University of Michigan, 1997Google Scholar
3 Damcott, D., Allen, T. and Was, G. S., J. Nucl. Mater. 225, p.97, (1995).Google Scholar
4 Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., “Handbook of Auger Electron Spectroscopy, 2nd Edition,” Perkin-Elmer Corporation, Eden Prairie, MN.Google Scholar
5 Kenik, E. A., Scripta Metall. 21, p.811, (1987).Google Scholar
6 Cliff, G. and Lorimer, G. W.: Proc. Fifth European Congress on Electron Microscopy, p. 140, Institute of Physics, Bristol, 1972.Google Scholar
7 Was, G. S., Allen, T. R., Busby, J. T., Gan, J., Damcott, D., Carter, D., Atzmon, M. and Kenik, E. A., J. Nucl. Mater., in press.Google Scholar
8 Carter, R.D., Damcott, D.L., Atzmon, M., Was, G.S., Bruemmer, S.M., and Kenik, E. A., J. Nucl. Mater. 211, p.70, (1994).Google Scholar
9 Perks, J. M., Marwick, A.D., and English, C.A., Harwell Laboratory, Oxfordshire, UK, AERE R 12121, June 1986.Google Scholar
10 Allen, T., Busby, J. T., Was, G. S. and Kenik, E. A., J. Nucl. Mater. 255, p. 4458, (1998).Google Scholar
11 Allen, T., Was, G. S. and Kenik, E. A., J. Nucl. Mater. 244, p.278, (1997).Google Scholar
12 Allen, T. R. and Was, G. S., Proc. Mater. Res. Soc., Materials Research Society, Pittsburgh, vol. 373, p. 101, 1995.Google Scholar
13 Rothman, S.J., Nowicki, L.J., and Murch, G.E., Journal of Physics F: Metal Physics 10, p. 383 (1980).Google Scholar
14 Million, B., Ruzickova, J., and Vrestal, J., Materi. Sci. Engin. 72, p.85, (1985).Google Scholar
15 Cenedese, P., Bley, F., and Lefebvre, S., Acta Crystall. A40, p. 228, (1984).Google Scholar
16 Marwick, A. D., Piller, R. C., and Cranshaw, T. E., J. Phys F. Met. Phys. 17, p.37, (1987).Google Scholar
17 Marucco, A., Mat. Sci. Eng., A189, p. 267, (1994).Google Scholar
18 Dimitrov, C., Huguenin, D., Moser, P., and Dimitrov, O., J. Nucl. Mater. 174, p. 2234, (1990).Google Scholar
19 Wiedersich, H., Okamoto, P. R., and Lam, N. Q., J. Nucl.. Mater. 83, p.98, (1979).Google Scholar
20 Watanabe, S. and Takahashi, H., J. Nucl. Mater. 208, p.191, (1994).Google Scholar
21 Dumbill, S., Ph.D. Thesis, University of Birmingham (1992).Google Scholar
22 Garner, F. A. and Kumar, A. S., ASTM STP 955, Eds., Garner, F. A., Packan, N. H., and Kumar, A. S., American Society for Testing and Materials, Philadelphia 1987, p.289.Google Scholar