Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:39:14.288Z Has data issue: false hasContentIssue false

Microcavity Effects in Thiophene-Based Oligomers

Published online by Cambridge University Press:  21 March 2011

G. Gigli
Affiliation:
Istituto Nazionale Fisica della Materia (INFM), Dip. Ingegneria dell'Innovazione, Università di Lecce, Via per Arnesano, 73100 Lecce, ITALY
M. Anni
Affiliation:
Istituto Nazionale Fisica della Materia (INFM), Dip. Ingegneria dell'Innovazione, Università di Lecce, Via per Arnesano, 73100 Lecce, ITALY
S. Patanè
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM), Dip. di Fisica della Materia e Tecnologie Avanzate, Universitá di Messina, ITALY
G. Barbarella
Affiliation:
Consiglio Nazionale delle Ricerche (CNR), ICOCEA, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, ITALY
L. Favaretto
Affiliation:
Consiglio Nazionale delle Ricerche (CNR), ICOCEA, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, ITALY
R. Cingolani
Affiliation:
Istituto Nazionale Fisica della Materia (INFM), Dip. Ingegneria dell'Innovazione, Università di Lecce, Via per Arnesano, 73100 Lecce, ITALY
Get access

Abstract

We report on the realization and optical properties of a fully evaporated organic microcavity based on LiF-TeOx Distributed Bragg Reflectors and a substituted quinquethiophene as active material. The PL spectrum shows a strong line-width reduction, down to 10 nm, with respect to the bulk spectrum, which is about 110 nm broad. The emission at the mode wavelength shows an enhancement due to the light matter coupling in the optical resonator. The cavity mode shows a splitting for emission angles higher than about 30 degrees which continuously increases with angle up to 99 meV. This feature is observed both in angle resolved PL spectra and in angle resolved reflectance with unpolarized light. A study of angle resolved reflectance with polarized light allows us to attribute this splitting to a polarization effect, rather than to Rabi splitting due to strong coupling in the cavity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gu, G., Parthasarathy, G., Burrows, P. E., Tian, P., Hill, I. G., Kahn, A., and Forrest, S. R., J.Appl. Phys. 86, 4067 (1999).Google Scholar
2. Burrows, P. E., Khalfin, V., Gu, G., and Forrest, S. R., Appl. Phys. Lett. 73, 435 (1998).Google Scholar
3. Lidzey, D. G., Pate, M. A., Whittaker, D. M., Bradley, D. D. C., Weaver, M. S., Fisher, T. A., and Skolnick, M. S., Chem. Phys. Lett. 263, 655 (1996).Google Scholar
4. Jordan, R. H., Rothberg, L. J., Dodabalapur, A., and Slusher, R. E., Appl. Phys. Lett. 69, 1997 (1996).Google Scholar
5. Dodabalapur, A., Rothberg, L. J., Jordan, R. H., Miller, T. M., Slusher, R. E., and Phillips, J. M., J. Appl. Phys 80, 6954 (1996).Google Scholar
6. Gruener, J., Cacialli, F., Samuel, I. D. W., and Friend, R. H., Synth. Met. 76, 137 (1996).Google Scholar
7. Wittmann, H. F., Gruener, L., Friend, R.H., Spencer, G. W. C., Moratti, S. C., and Holmes, A. B., Adv. Mat. 7, 541 (1995).Google Scholar
8. Dodabalapur, A., Rothberg, L. J., Miller, T. M., and , Kwock, Appl. Phys. Lett. 64, 2486 (1994).Google Scholar
9. Tsutsui, T., Takada, N., Saito, S., and Ogino, E., Appl. Phys. Lett. 65, 1868 (1994).Google Scholar
10. Diaz-Garcia, M. A., Hide, F., Schwartz, B. J., McGehee, M. D., Andersson, M. R., and Heeger, A. J., Appl. Phys. Lett. 70, 3191 (1997).Google Scholar
11. Tessler, N., Denton, G. J., and Friend, R. H., Nature 382, 695 (1996).Google Scholar
12. Lidzey, D. G., Bradley, D. D. C., Virgili, T., Armitage, A., Skolnick, M. S., and Walker, S., Phys. Rev. Lett. 82, 3316 (1999).Google Scholar
13. Virgili, T., Lidzey, D. G., Bradley, D. D. C., Cerullo, G., Stagira, S., and Silvestri, S. De, Appl. Phys. Lett. 74, 2767 (1999).Google Scholar
14. Lidzey, D. G., Bradley, D. D. C., Skolnick, M. S., Virgili, T., Walker, S., and Whittaker, D. M., Nature 395, 53 (1998).Google Scholar
15. Arena, A., Patanè, S., Saitta, G., Savasta, S., Girlanda, R. and Rinaldi, R., Appl. Phys. Lett. 72, 2571 (1998).Google Scholar
16. Granlund, T., Theander, M., Berggren, M., Andersson, M., Ruzeckas, A., Sundstrom, V., Bjork, G., Granstrom, M., and Inganas, O., Synth. Met. 102, 1038 (1999).Google Scholar
17. Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S. D., and Ippen, E., Appl. Phys.Lett. 57, 2814 (1990).Google Scholar
18. Ochi, N., Shiotani, T., Yamanishi, M., Honda, Y., and Suemune, I., Appl. Phys. Lett. 58, 2735 (1991).Google Scholar
19. Lei, C., and Deppe, D. G., Journ. Appl. Phys. 71, 2530 (1991).Google Scholar
20. Yamauchi, T., Arakawa, Y., and Nishioka, M., Appl. Phys. Lett. 58, 2339 (1991).Google Scholar
21. Houdré, R., Weisbuch, C., Stanley, R. P., Oesterle, U., Pellandini, P., and Ilegems, M., Phys. Rev. Lett. 73, 2043 (1994).Google Scholar
22. Stanley, R. P., Houdré, R., Weisbuch, C., Oesterle, U., and Ilegems, M., Phys. Rev. B 53, 10995 (1996).Google Scholar
23. Baxter, D., Skolnick, M. S., Armitage, A., Astratov, V. N., Whittaker, D. M., Fisher, T. A., Roberts, J. S., Mowbray, D. J., and Kaliteevsky, M. A., Phys. Rev. B 56, R10032 (1997).Google Scholar
24. Panzarini, G., Andreani, L. C., Armitage, A., Baxter, D., Skolnick, M. S., Astratov, V. N., Roberts, J. S., Kavokin, A. V., M Vladimirova, R., and Kaliteevski, M. A., Phys Rev. B 59, 5082 (1999).Google Scholar