Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:27:16.787Z Has data issue: false hasContentIssue false

Microcapsule-based materials for electrophoretic displays

Published online by Cambridge University Press:  22 June 2011

Runying Dai
Affiliation:
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, State Key Lab of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Gang Wu
Affiliation:
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, State Key Lab of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Peipei Yin
Affiliation:
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, State Key Lab of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Hongzheng Chen*
Affiliation:
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, State Key Lab of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Get access

Abstract

Electrophoretic displays, the rewritable non-light-emitting display technology based on the movement of colored pigments inside a low dielectric liquid as a voltage is applied, have attracted a great deal of academic and commercial interests due to the combination of the advantages of both electronic displays and conventional paper, including paper-like high contrast appearance, ultra-low power consumption, thinness, flexibility etc. Fabrication of electrophoretic ink by microencapsulating the electrophoretic suspension into individual microcapsules is one way to realize such application. However, there are still some limitations for its commercial application, such as the dispersion and the electrophoretic mobility of charged particles due to the nano-particles aggregation, the barrier property and stability of microcapsule wall due to the suspension releasing, etc. In this presentation, systematic studies on the preparation of electrophoretic particles and microencapsulation by complex coacervation method were carried out to solve the mentioned problems. The obtained microcapsules can be quasi-monolayer coated on ITO/PET substrate and driven by static mode to obtain a matrix character display prototype.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jang, I. B., Sung, J. H., Choi, H. J., Chin, I., J. Mater. Sci. 40, 30213024 (2005).Google Scholar
2. Yu, D. G., An, J. H., Bae, J. Y., Jung, D. J., Kim, S., Ahn, S. D., Kang, S. Y., Suh, K. S., Chem. Mat. 16, 46934698 (2004).Google Scholar
3. Meng, X. W., Tang, F. Q., Peng, B., Ren, J., Nanoscale Res. Lett. 5, 174179 (2010).Google Scholar
4. Tan, T. F., Wang, S. R., Bian, S. G., Li, X. G., An, Y., Liu, Z. J., Appl. Surf. Sci. 256, 69326935 (2010).Google Scholar
5. Erdem, B., Sudol, E. D., Dimonie, V. L., El-Aasser, M. S., Macromol. Symp. 155, 181198 (2000).Google Scholar
6. Duan, J. H., Feng, Y. Q., Yang, G., Xu, W. L., Li, X. G., Liu, Y., Zhao, J., Ind. Eng. Chem. Res. 48, 14681475 (2009).Google Scholar
7. Zou, H., Wu, S. S., Shen, J., Chem. Rev. 108, 38933957 (2008).Google Scholar
8. Park, J. H., Lee, M. A., Park, B. J., Choi, H. J., Curr. Appl. Phys. 7, 349351 (2007).Google Scholar
9. Werts, M. P. L., Badila, M., Brochon, C., Hebraud, A., Hadziioannou, G., Chem. Mater. 20, 12921298 (2008).Google Scholar
10. Li, L. Y., Qin, D. B., Yang, X. L., Liu, G. Y., Colloid Polym. Sci. 288, 199206 (2010).Google Scholar
11. Leimbach, J., Rupprecht, H., Colloid Polym. Sci. 271, 307309 (1993).Google Scholar
12. Shen, Y. Synthesis and characterization of oil-soluble dispersants. Canada, Wterloo university, Ontario (2006).Google Scholar
13. Park, B. J., Sung, J. H., Kim, K. S., Chin, I., Choi, H. J., J. Macromol. Sci. Phys. B45, 5360 (2006).Google Scholar
14. Lee, J. Y., Sung, J. H., Jang, I. B., Park, B. J., Choi, H. J., Synth. Met. 153, 221224 (2005).Google Scholar
15. Rong, Y., Chen, H. Z., Li, H. Y., Wang, M., Colloids Surf. A: Physicochem. Eng. Asp. 253, 193197 (2005).Google Scholar
16. Yang, Y. H., Dan, Y., Colloid Polym. Sci. 281, 794799 (2003).Google Scholar
17. Yang, M. J., Dan, Y., Colloid Polym. Sci. 284, 243250 (2005).Google Scholar
18. Zou, J. P., Zhao, Y., Yang, M. J., Dan, Y., Colloid Polym. Sci. 286, 10091018 (2008).Google Scholar
19. Gao, P., Feng, Y. Q., Li, G., Li, X. G., Fine Chemcials. 24, 59 (2007).Google Scholar
20. Sun, G., Zhang, Z., J. Microencapsulation. 18, 593602 (2001).Google Scholar
21. Sun, G., Zhang, Z., Int. J. Pharm. 242, 307311 (2002).Google Scholar
22. Song, J. K., Choi, H. J., Chin, I., J. Microencapsulation. 24, 1119 (2007).Google Scholar
23. Song, J. K., Kang, H. C., Kim, K. S., Chin, I. J., Mol. Cryst. Liq. Cryst. 464, 845851 (2007).Google Scholar
24. Song, J., Chen, L., Li, X. J., Microcapsulation technology and its application, (Chemical Industry publisher, Beijing, 2001) p.128129.Google Scholar
25. Mathieu, F., Ugazio, S., Carnelle, G., Ducini, Y., Legrand, J., J. Appl. Polym. Sci. 101, 708714 (2006).Google Scholar
26. Lii, C. Y., Liaw, S. C., Lai, V. M. F., Tomasik, P., Eur. Polym. J. 38, 13771381 (2002).Google Scholar
27. Choi, Y. S., Hong, S. R., Lee, Y. M., Song, K. W., Park, M. H., Nam, Y. S., Biomaterials. 20, 409417 (1999).Google Scholar
28. Magdassi, S., Vinetsky, Y., Microencapsulation: methods, and industrial applications, (Marcel Dekker Inc, New York, 1997) p.2134.Google Scholar
29. Chang, C. P., Leung, T. K., Lin, S. M., Hsu, C. C., Colloids Surf. B: Biointerfaces. 50, 136140 (2006).Google Scholar
30. Mayya, K. S., Bhattacharyya, A., Argillier, J. F., Polym. Int. 52, 644647 (2003).Google Scholar
31. Leclercq, S., Harlander, K. R., Reineccius, G. A., Flavour Frag. J. 24, 1724 (2009).Google Scholar
32. Emregul, E., Sungur, S., Akbulut, U., Biomaterials. 17, 14231427 (1996).Google Scholar
33. Dai, R. Y., Wu, G., Chen, H. Z., Colloid and Polymer Science. 289, 401407 (2011).Google Scholar
34. Dai, R. Y., Wu, G., Li, W. G., Zhou, Q. A., Li, X. H., Chen, H. Z., Colloids and Surfaces A: Physicochemical and Engineering Aspects. 362, 8489 (2010).Google Scholar
35. Chatterjee, A., Moulik, S. P., Sanyal, S. K., Mishra, B. K., Puri, P. M., J. Phys. Chem. B. 105, 1282312831 (2001).Google Scholar
36. Zeng, X., Zhang, L. B., Chen, Y., Liu, Z. L., CN Patent, No.101082752A. (5 December 2007).Google Scholar
37. Yin, P. P., Wu, G., Chen, H. Z., Wang, M., Synth. Met. Accepted, (2011).Google Scholar
38. Rong, Y., Chen, H. Z., Wei, D. C., Sun, J. Z., Wang, M., Colloids and Surfaces A: Physicochem. Eng. Aspects. 242, 1720 (2004).Google Scholar
39. Guillot, S., Delsanti, M., Desert, S., Langevin, D., Langmuir. 19, 230237 (2003).Google Scholar
40. Schwuger, M. J., Lange, H., Tenside. 5, 257259 (1968).Google Scholar
41. Dai, R. Y., Wu, G., Chen, H. Z., Science China-Chemistry. 54, 385391 (2011).Google Scholar
42. Li, W. G., Wu, G., Chen, H.Z., Wang, M.. Gelatin-based microcapsules with compact wall prepared by complex coacervation. (Pan-Pacific Imaging Conference’08, Tokyo, 2008) pp. 474476.Google Scholar
43. Li, W. G., Wu, G., Chen, H. Z., Wang, M., Colloids and Surfaces A: Physicochem. Eng. Aspects. 333, 133137 (2009).Google Scholar
44. Wu, G., Dai, R. Y., Li, W. G., Yin, P. P., Chen, H. Z., Wang, M., Current Applied Physics. 11, 321326 (2011).10.1016/j.cap.2010.07.027Google Scholar