Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:53:05.125Z Has data issue: false hasContentIssue false

Micro- And Nano-Mechanical Behavior of Diamondlike Carbon Containing Foreign Atoms Prepared by Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

Q. Wei
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Box 7916, Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7916
R. J. Narayan
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Box 7916, Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7916
A. K. Sharma
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Box 7916, Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7916
J. Sankar
Affiliation:
Department of Mechanical Engineering, NC A&T State University, Greensboro, NC 27411
S. Oktyabrsky
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Box 7916, Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7916
J. Narayan
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Box 7916, Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695-7916
Get access

Abstract

We have prepared diamondlike carbon (DLC) films using KrF excimer pulsed laser (248 nm). The DLC films were deposited on Si (100) substrates and Cu and Ti were incorporated into the films through adopting a new target design. Visible Raman spectroscopy analysis of G-peak was correlated to internal stress changes in the DLC films due to incorporation of foreign atoms. Reduction of internal stresses in the presence of foreign atoms was established. This is consistent with adhesion studies that showed significant improvement in adhesion of DLC films containing dopants. Nanohardness and Young's modulus of DLC films containing Ti and Cu showed some decrease as compared to pure DLC. The experimental results are discussed in terms of the effect of dopants on the short range environment of the continuous random network (CRN) of DLC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Covalently Bonded Disordered Thin-Film Materials, eds. by M. Siegal et al., (Mater. Res. Soc. Proc. 498, PA, 1998).Google Scholar
2. See, for example, Mater. Sci. Forum, 52–53, 1990.Google Scholar
3. Robertson, J., Adv. Phys. 35, 317 (1986).Google Scholar
4. Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., McHargue, J., Appl. Phys. Lett. 54, 2455 (1989).Google Scholar
5. McKenzie, D. R., Muller, D. and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
6. Berger, S. D., McKenzie, D. R. and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988).Google Scholar
7. Kulik, J., Lifshitz, Y., Lampert, G. D., Rabalais, J. W. and Marton, D., J. Appl. Phys. 76, 5063 (1994).Google Scholar
8. Veerasamy, V. S., Yuan, J., Amaratunga, G. A. J., Milne, W. I., Gilkes, K. W. R., Weiler, M. and Brown, L. M., Phys. Rev. B 48, 17954 (1993).Google Scholar
9. Street, R. A., Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.Google Scholar
10. Patton, S. T. and Bhushan, B., IEEE Trans. Magnetics, 34, 575 (1998).Google Scholar
11. Gerstner, E. G. and McKenzie, D. R., Diamond Related Mater., 7, 1172 (1998).Google Scholar
12. Wei, Q., Narayan, R. J., Sharma, A. K., Sankar, J. and Narayan, J., in Covalently Bonded Disordered Thin-Film Materials, eds. by M. Siegal et al., (Mater. Res. Soc. Proc. 498, Pittsburgh, PA, 1998) pp. 6166.Google Scholar
13. Chhowalla, M., Yin, Y., Amaratunga, G. A. J., McKenzie, D. R. and Frauenheim, Th., Diam. Related Mater. 6, 207 (1997).Google Scholar
14. Lifshitz, Y., Kasi, S. R. and Rabalais, J. W., Mater. Sci. Forum, 52–53, 237 (1990).Google Scholar
15. Yin, Y. and McKenzie, D. R., Thin Solid Films, 280, 95 (1996).Google Scholar
16. Narayan, J., Sharan, S. and Jagannadham, K., J. de Phys., Col. C5, C5731 (1988).Google Scholar
17. Wei, Q., Narayan, R. J., Narayan, J., Sankar, J. and Sharma, A. K., Mater. Sci. Eng. B 53, 262 (1998).Google Scholar
18. Matsuda, N., Baba, S. and Kinbara, A., Thin Solid Films 81, 301 (1981).Google Scholar
19. Wei, Q., Ph. D Thesis, North Carolina State University, 1998.Google Scholar
20. Nemanich, R. J. and Solin, S. A., Phys. Rev. B20, 392 (1979).Google Scholar
21. Pailard, V., Melinon, P., Dupuis, V., Perez, A., Perez, J. P., Guiraud, G., Fornazero, J. and Pauczer, G., Phys. Rev. B49, 11433 (1994).Google Scholar
22. Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
23. Mildner, D. F. R. and Carpenter, J. M., J. Non-Cryst. Solids 47, 391 (1982).Google Scholar
24. Li, F. and Lannin, J. S., Phys. Rev. Lett. 65, 1905 (1991).Google Scholar
25. Green, D. C., McKenzie, D. R. and Lukins, P. B., Mater. Sci. Forum 52–53, 103 (1990).Google Scholar
26. Fields, J. E., Properties of Diamond, Academic Press, 1979.Google Scholar
27. Eckel, M., Kampschulte, G. and Markschlager, P., Surf. Coat. Technol. 74–75, 827 (1995).Google Scholar
28. Koskinen, J., Ronkainen, H., Hirvonen, J.-P., Lappalainen, R. and Pischow, K. A., Diam. Related Mater. 4, 843 (1995).Google Scholar
29. Dumkum, C., Grant, D. M. and McColl, I. R., Diam. Related Mater. 6, 802 (1997).Google Scholar
30. Antilla, A., Salo, J., Lappalainen, R., Mater. Lett. 24, 153 (1995).Google Scholar
31. Voevodin, A. A., Capano, M. A., Laube, S. J. P., Donley, M. S. and Zabinski, J. S., Thin Solid Films, 298, 107 (1997).Google Scholar