No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We have deposited 50 nano-layers of 710 nm of SiO2/SiO2+ZrNiSn with a periodic structure consisting of alternating layers where each layer is about 14 nm thick. The purpose of this research is to generate nanolayers of nanostructures of ZrNiSn with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ion bombardment taking advantage of the energy deposited in the MeV ions track to nucleate nanostructures. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/ĸ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and ĸ is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing ĸ. The electrical and thermal properties of the layered structures were studied before and after bombardment by 5 MeV Si ions at seven different fluences ranging from 1014 to 1015 ions/cm2 in order to form nanostructures in layers of SiO2 containing few percent of ZrNiSn. Rutherford Backscattering Spectrometry (RBS) was used to monitor elemental analysis of the film.