Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T06:41:22.245Z Has data issue: false hasContentIssue false

Mev Ion Beam Synthesis of Well-Defined Buried 3C-Sic Layers in Silicon

Published online by Cambridge University Press:  21 February 2011

J.K.N. Lindner
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
B. Götz
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
A. Frohnwieser
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
B. Stritzker
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
Get access

Abstract

Well-defined, homogenous, deep-buried 3C-SiC layers have been formed in silicon by ion beam synthesis using MeV C+ ions. Layers are characterized by RBS/channeling, X-ray diffraction, x-sectional TEM and electron diffraction. The redistribution of implanted carbon atoms into a rectangular carbon depth distribution associated with a well-defined layer during the post-implantation anneal is shown to depend strongly on the existence of crystalline carbide precipitates in the as-implanted state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Morkoç, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl.Phys. 76 (1994) 13631398 Google Scholar
2 von Münch, W. and Wiebach, S., Diam. and Rei. Mat.3 (1994) 500.Google Scholar
3 Lindner, J.K.N., Frohnwieser, A., Rauschenbach, B., and Stritzker, B., Mater. Res. Soc. Symp. Proc. 354 (1995); J.K.N.Lindner, K.Volz, and B.Stritzker, ace. for pubi, in Proc. of the 6th Int. Conf. on Silicon Carbide and Related Materials, Kyoto (1995); J.K.N. Lindner, K.Volz, U. Preckwinkel, B. Götz, A. Frohnwieser, B. Rauschenbach, and B. Stritzker, subm. to Mat. Chem. and Phys.Google Scholar
4 Frangis, N., Nejim, A., Hemment, P.L.F., Stoemenos, J., and Van Landuyt, J., presented at the EMRS Spring Meeting Strasbourg 1995.Google Scholar
5 Müller, G., Krötz, G., and Niemann, E., Sensors and Actuators A 43 (1994) 259268.Google Scholar
6 Chayahara, A., Kiuchi, M., Horino, Y., Fujii, K., and Satou, M., Jpn.J.Appl. Phys. 31 (1992) 139.Google Scholar
7 Chayahara, A., Kiuchi, M., Kinomura, A., Mokuno, Y., Horino, Y., and Fujii, K., JpnJ.Appl. Phys. 32 (1993) L1286.Google Scholar
8 Chayahara, A., Nakano, S., Ogiso, H., Mokuno, Y., Kinomura, A., Yamanaka, K., Horino, Y., Fujii, K., and Koda, T., presented at the IBMM'95 Canberra 1995.Google Scholar
9 Ziegler, J.F., Biersack, J.P., and Littmark, U., in Ziegler, J.F. (ed.): The Stopping and Range of Ions in Matter, Vol.1, Pergamon, New York, 1985.Google Scholar
10 Frohnwieser, A., Thesis, University of Augsburg (1995).Google Scholar
11 Borders, J.A., Picraux, S.T., and Beezhold, W., Appi. Phys. Lett. 18 (1971) 509.Google Scholar
12 Heera, V., Stoemenos, J., Kögler, R., and Skorupa, W., accepted for publication in J. Appi. Phys. (1995).Google Scholar
13 Reeson, K.J., Hemment, P.L.F., Stoemenos, J., Davis, J.R., and Celler, G.K., Inst. Phys. Conf. Ser. 87 (1987) 472.Google Scholar