Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:26:19.142Z Has data issue: false hasContentIssue false

Metastability and Properties of Metallic Bulk Glass Forming Alloys

Published online by Cambridge University Press:  10 February 2011

H.-J. Fecht*
Affiliation:
University Ulm, Faculty of Engineering, Department of Materials, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
Get access

Abstract

Glasses are generally produced from the highly undercooled liquid state by rapid quenching methods or quasi-statically at slow cooling by the effective control of potent heterogeneous nucleation sites. For metallic systems the latter method recently has led to the development of bulk metallic glass with a complex multicomponent chemistry and advanced engineering properties. With these alloys crystallization can be avoided over a broad temperature / time window. As such, the relevant thermodynamic properties of the metastable glassy and undercooled liquid states can be directly measured below and above the glass transition temperature, respectively. The obtained data give new insight into the nature of the glass transition suggesting that it is not a phase transition in the classical sense but kinetic freezing triggered by an underlying entropie instability to avoid crystallization. Further measurements of the mechanical and wear properties point to the unique engineering properties of these highly disordered materials for technological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Zhang, T., Nishiyama, N., Ohba, K. and Masumoto, T., Mater. Trans. JIM 34 (1993) p. 1234.Google Scholar
2. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63 (1993) p. 2342 Google Scholar
3. Klose, S., Frankwicz, P.S. and Fecht, H.J., Mat. Sci. Forum, 179–181 (1995) p. 729 Google Scholar
4. Fecht, H.J., Mater. Trans. JIM 36 (1995) p. 391 Google Scholar
5. Macht, M.P., Wanderka, N., Wiedenmann, A., Wollenberger, H., Wei, Q., Klose, S.G., Sagel, A. und Fecht, H.J., MRS-Proc., Boston (1995) in printGoogle Scholar
6. Wanderka, F., Macht, H.P., Wei, , Klose, S. and Fecht, H.J., Mat. Sci. Forum, in printGoogle Scholar
7. Klose, S., Ph.D. Thesis, Technical University Berlin (1995)Google Scholar
8. Busch, R., Schneider, S., Peker, A. and Johnson, W.L., Appl. Phys. Lett 67 (1995) p. 1544 Google Scholar
9. Schneider, S., Thiyagarajan, P. and Johnson, W.L., Appl. Phys. Lett. 68 (1996) 493 Google Scholar
10. Perepezko, J. H. and Paik, J.S., J. Non-Crystall. Solids 61&62, (1984) 113 Google Scholar
11. Kauzmann, W., Chem. Rev. 43 (1948) p. 219 Google Scholar
12. Saslow, W.M., Phys. Rev. B 37 (1988) p. 676 Google Scholar
13. Angeli, C.A., J. Phys. Chem. Solids, 49 (1988) p. 863 Google Scholar
14. Bakke, E., Busch, R. and Johnson, W.L., Appl. Phys. Lett. 67 (1995) p. 3260 Google Scholar
15. He, Y., Schwarz, R.B., Mandrus, D.G. and Jacobson, L., J. Non-Cryst. Solids, 205 – 207 (1996) (in print)Google Scholar
16. Talion, J.L., Nature 342 (1989) p. 658 Google Scholar
17. Fecht, H.J. and Johnson, W.L., Nature 334 (1988) p. 50 Google Scholar
18. Seidel, A., Diploma Thesis, Technical University Berlin (1995)Google Scholar
19. Frankwicz, P.S., Ram, S. and Fecht, H.J., Appl. Phys. Lett. 68 (1996) p. 2825 Google Scholar
20. Bruck, H.A., Christman, T., Rosakis, A.J. and Johnson, W.L., Scripta Metall. 30 (1994) p. 429 Google Scholar
21. Ashby, M.F., Materials Selection in Mechanical Design, Pergamon Press, Oxford (1993)Google Scholar