Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:34:06.702Z Has data issue: false hasContentIssue false

Metal-oxide Semiconductor Field-effect Transistors using Single ZnO Nanowire

Published online by Cambridge University Press:  26 February 2011

Young-Woo Heo
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
B. S. Kang
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida.
L. C. Tien
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Y. Kwon
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
J. R. La Roche
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida.
B. P. Gila
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
F. Ren
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida.
S. J. Pearton
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
D. P. Norton
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida
Get access

Abstract

Single ZnO nanowire metal-oxide semiconductor field effect transistors (MOSFETs) were fabricated using nanowires grown by site selective Molecular Beam Epitaxy. When measured in the dark at 25°C, the depletion-mode transistors exhibit good saturation behavior, a threshold voltage of ∼-3V and a maximum transconductance of order 0.3 mS/mm. Under ultra-violet (366nm) illumination, the drain-source current increase by approximately a factor of 5 and the maximum transconductance is ∼ 5 mS/mm. The channel mobility is estimated to be ∼3 cm2 /V.s, which is comparable to that reported for thin film ZnO enhancement mode MOSFETs and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, R.L., J. Appl.Phys. 95, 5813 (2004).Google Scholar
2. Ohya, Y., Niwa, T., Ban, T., and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 40, 297 (2001).Google Scholar
3. Kwon, Y., Li, Y., Heo, Y. W., Jones, M., Holloway, P. H., Norton, D. P., Park, Z. V., and Li, S., Appl. Phys. Lett. 84, 2685 (2004)Google Scholar
4. Masuda, S., Kitamura, K., Okumura, Y., and Miyatake, S., J. Appl. Phys. 93, 1624 (2003).Google Scholar
5. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
6. Carcia, P. F., McLean, R. S., Reilly, M. H., and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
7. Wager, J. F., Science 300, 1245 (2003).Google Scholar
8. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., Science 300, 1269 (2003)Google Scholar
9. Nishii, J., Hossain, F. M., Takagi, S., Aita, T., Saikusa, K., Ohmaki, Y., Ohkubo, I., Kishimoto, S., Ohtomo, A., Fukumura, T., Matsukura, F., Ohno, Y., Koinuma, H., Ohno, H., and Kawasaki, M., Jpn. J. Appl. Phys., Part 2 42, L347 (2003)Google Scholar
10. Ohta, Hiromichi and Hosono, Hideo, Materials Today 7, 42 (2004).Google Scholar
11. Hoffman, R.L., J. Appl.Phys. 95, 5813 (2004).Google Scholar
12. Ohya, Y., Niwa, T., Ban, T., and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 40, 297 (2001).Google Scholar
13. Kwon, Y., Li, Y., Heo, Y. W., Jones, M., Holloway, P. H., Norton, D. P., Park, Z. V., and Li, S., Appl. Phys. Lett. 84, 2685 (2004)Google Scholar
14. Masuda, S., Kitamura, K., Okumura, Y., and Miyatake, S., J. Appl. Phys. 93, 1624 (2003).Google Scholar
15. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
16. Carcia, P. F., McLean, R. S., Reilly, M. H., and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
17. Wager, J. F., Science 300, 1245 (2003).Google Scholar
18. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., Science 300, 1269 (2003)Google Scholar
19. Ohta, Hiromichi and Hosono, Hideo, Materials Today 7, 42 (2004).Google Scholar
20. Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P. and Lin, C.L., Appl.Phys.Lett. 84, 3654 (2004).Google Scholar
21. Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Gao, X.G. and Li, J.P., Appl.Phys.Lett. 84, 3654 (2004).Google Scholar
22. Keem, K., Kim, H., Kim, G.T., Lee, J.S., Min, B., Cho, K., Sung, M.Y. and Kim, S., Appl.Phys.Lett. 84, 4376 (2004).Google Scholar
23. Look, D.C., Mater. Sci. Eng. B80, 383 (2001).Google Scholar
24. Wang, Z.L., Materials Today 7, 26 (2004).Google Scholar
25. Heo, Y.W., Varadarjan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F. and Fleming, P.H., Appl.Phys.Lett. 81, 3046 (2002).Google Scholar
26. Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F. and Steiner, T., Materials Today 7, 34 (2004)Google Scholar