Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:29:07.486Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapour Deposition of II-VI Semiconductor Thin Films Using Single-Source Approach

Published online by Cambridge University Press:  01 February 2011

Mohammad Afzaal
Affiliation:
The Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: [email protected]; [email protected]; [email protected];
David Crouch
Affiliation:
The Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: [email protected]; [email protected]; [email protected];
Paul O'Brien
Affiliation:
The Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: [email protected]; [email protected]; [email protected];
Jin-Ho Park
Affiliation:
The Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: [email protected]; [email protected]; [email protected];
Get access

Abstract

Thin films of CdS and CdSe have been deposited on glass substrates by low pressure metal-organic chemical vapour deposition (LP-MOCVD) using Cd[(EPiPr2)2N]2 (E = S, Se) as single-source precursors. These air-stable precursors are volatile, making them suitable for the deposition of thin films. As-deposited films were crystalline metal chalcogenides, as confirmed by X-ray powder diffraction (XRD), and their morphologies were studied by scanning electron microscopy (SEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bochmann, M., Webb, K. J., Harman, M. and Hursthouse, M. B., Angew. Chem, Int. Ed. Engl. 638, 29 (1990).Google Scholar
[2] Bochmann, M., Webb, K. J., Hursthouse, M. B. and Mazid, M., J. Chem. Soc, Dalton Trans. 9, 2317 (1991).Google Scholar
[3] Bochmann, M., and Webb, K. J. J. Chem. Soc, Dalton Trans. 9, 2325(1991).Google Scholar
[4] Dabbousi, B. O., Bonasia, P. J. and Arnold, J., J. Am. Chem. Soc. 113, 3186 (1991).Google Scholar
[5] Bonasia, P. J. and Arnold, J., Inorg. Chem. 31, 2508 (1992).Google Scholar
[6] Nomura, R., Murai, T., Toyosaki, T. and Matsuda, H., Thin Solid Films. 4, 271 (1995).Google Scholar
[7] Frigo, D. M., Khan, O. F. Z. and O'Brien, P., J. Cryst. Growth. 96, 989 (1989).Google Scholar
[8] Hurthouse, M. B., Malik, M. A., Motevalli, M., and O'Brien, P., Polyhedron. 11, 45 (1992).Google Scholar
[9] Takahashi, Y., Yuki, R., Sugiura, M., Motijima, S. and Sugiiyama, K., J. Cryst. Growth. 50, 491 (1980).Google Scholar
[10] Chunggaze, M., McAleese, J., O'Brien, P. and Otway, D. J., Chem. Commun. 7, 833 (1998).Google Scholar
[11] Afzaal, M., Crouch, D., O'Brien, P., Park, J.-H. and Woollins, J. D., submitted to Advanced Materials, CVD.Google Scholar
[12] Malik, M. A. and O'Brien, P., Adv. Mater. Opt. Electron. 3, 171 (1994).Google Scholar
[13] Cupertino, D., Keyte, R., Slawin, A. M. Z., Williams, D.J. and Woollins, D. J., Inorg. Chem. 35, 2695 (1996).Google Scholar
[14] Cupertino, D., Birdsall, D. J., Slawin, A. M. Z. and Woollins, J. D., Inorg. Chem. Acta. 290, 1 (1999).Google Scholar
[15] Trindade, T., O'Brien, P. and Pickett, N. L., Chem. Mater. 13, 3845 (2001).Google Scholar