Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:57:12.391Z Has data issue: false hasContentIssue false

Metal-insulator transition and the character of the hole impurity bands in ferromagnetic GaMnAs disordered dilute magnetic semiconductor

Published online by Cambridge University Press:  15 March 2011

R. da Silva Neves
Affiliation:
Instituto de Física, Universidade Federal da Bahia, 40210 340 Salvador, Bahia, Brazil
A. Ferreira da Silva
Affiliation:
Instituto de Física, Universidade Federal da Bahia, 40210 340 Salvador, Bahia, Brazil
R. Kishore
Affiliation:
Instituto Nacional de Pesquisas Espaciais –INPE/LAS 12210 970 São José dos Campos, São Paulo, Brazil
Get access

Abstract

The study of ferromagnetic transition of Ga1-xMnxAs dilute magnetic semiconductor (DMS) is much of interest mainly due to the potential application in spintronic devices. Based on the mean field approach we present the average contribution of the hole spins by considering the holes in an impurity band (IB) and the critical concentration for the metal-insulator transition (MIT) in this semiconductor. In order to calculate the mean configuration of spins of impurities Mn+2 we use a formalism proposed for a spatial disordered system. The results for the metallic densities around the MIT transition are compared to experimental results and other theoretical findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Macdonald, A. H., Schiffer, P. and Samarth, N., Nature Materials, 4, 195 (2005).Google Scholar
2. Kitchen, Dale, Richardella, Anthony, Tang, Jian-Ming, Flatté, Michael E. and Yazdani, Ali Nature 442, 446 (2006).Google Scholar
3. Silva, A. Ferreira da, Kishore, R. and Lima, I. C. da Cunha, Phys. Rev. B 23, 4035 (1981).Google Scholar
4. Berciu, M. and Bhatt, R. N., Phys. Rev. Lett. 87, 107203 (2001);Phys. Rev. B 69, 045202 (2004).Google Scholar
5. Chattopadhyay, A., Sarma, S. Das, and Millis, A. J., Phys. Rev. Lett. 87, 227202 (2001).Google Scholar
6. Mott, N.F., Can. J. Phys. 34, 1356 (1956).Google Scholar
7. Berggren, K. F., Philos. Mag. 27, 1027 (1973).Google Scholar
8. Edwards, P. P. and Sienko, M. J., Phys. Rev. B 17, 2575 (1978).Google Scholar
9. Nubile, P. and Silva, A. Ferreira da, Solid State Electron 41, 121 (1997).Google Scholar
10. Silva, A. Ferreira da, J. Appl. Phys. 79, 5249 (1994).Google Scholar
11. Abramof, E., Silva, A. Ferreira da, Sernelius, B. E., Souza, J. P. de and Boudinov, H., J. Mater. Res. 12, 641 (1997).Google Scholar
12. Silva, A. Ferreira da, Phys. Scr., T14, 27 (1986)Google Scholar
13. Jungwirt, T., Sinova, Jairo, MacDonald, A. H., Gallagher, B. L., Novák, V., Edmonds, K. W., Rushfort, A. W., Capion, R. P., Foxon, C. T., Eaves, L., Olejník, E., Yang, S. R. Eric, Wundelich, J., Gould, C., Molenkamp, L. W., Dielt, T., and Ohno, H., Phys Rev. B 76, 125206 (2007).Google Scholar
14. Silva, A. Ferreira da, Pepe, I., Sernelius, Bo E., Persson, C., Ahuja, R., Souza, J. P. de, Suzuki, Yoko, Yang, Y., J. Appl. Phys. 95, 2532 (2004)Google Scholar
15. Matsubara, Takeo and Toyozawa, Yutaka, Progr. Theor. Phys 26, 5 (1961).Google Scholar
16. Okabayashi, J., Kimura, A., Rader, O., Mizokawa, T., Fujimori, A., Hayashi, T. and Tanaka, M., Physica E(Amsterdam) 10, 192 (2001).Google Scholar
17. Campion, R. P., Edmonds, K. W., Zhao, L. X., Wang, K. Y.., Foxon, C. T., Gallagher, B. L., and Staddon, C. R., J. Cryst. Growth 247, 42 (2003).Google Scholar
18. Kopecklý, M., Kub, J.., Busetto, E., Lausi, A., Cukr, M., Novák, V., Olejnik, K., Wringht, J. P., and Fábry, J., J. Appl. Crystallog. 39, 735 (2006)Google Scholar