Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:52:29.407Z Has data issue: false hasContentIssue false

Metal Oxide Nanocrystals: Building Blocks for Mesostructures and Precursors for Metal Nitrides

Published online by Cambridge University Press:  17 March 2011

Markus Niederberger
Affiliation:
Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
Jelena Buha
Affiliation:
Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam, 14424, Germany
Igor Djerdj
Affiliation:
Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
Get access

Abstract

Sol-gel routes to metal oxide nanoparticles in organic solvents under exclusion of water represent a valuable alternative to aqueous methods. In comparison to the complex aqueous chemistry, nonaqueous processes offer the possibility to better understand and to control the reaction pathways on a molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined and uniform particle morphologies. The manifold role of the organic species in providing the oxygen for the oxide formation and in controlling the crystal growth and the assembly properties makes it possible to tailor the morphological, structural and compositional characteristics of the final inorganic products.

In addition to metal oxides with nearly spherical crystallite sizes in the range of just a few nanometers, also more complex morphologies such as nanowire bundles, nanorods or lamellar organic-inorganic hybrids of varying hierarchical complexity can be achieved in one step and without the use of any surfactants. The spherical nanocrystallites are on the one hand versatile building blocks for the fabrication of fully crystalline and ordered mesoporous materials and on the other hand suitable precursors for the synthesis of metal nitride nanoparticles.

This proceeding provides an overview of the various oxidic nanoparticles synthesized via the nonaqueous and surfactant-free sol-gel approach, summarizes the most frequently found formation mechanisms, and offers some insight into the crystallization pathway of nanoparticles. Furthermore, the use of metal oxide nanoparticles as nanobuilding blocks for the preparation of nano- and mesostructures as well as their transformation into metal nitride nanocrystals will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fierro, J. L. G. and Fierro, L. L. G., Metal Oxides: Chemistry and Applications, CRC, Taylor & Francis, Boca Raton, 2006.Google Scholar
2. Rao, C. N. R. and Raveau, B., Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, Wiley-VCH, New York, 1998.Google Scholar
3. Niederberger, M. and Garnweitner, G., Chem. Eur. J. 12, 7282 (2006).Google Scholar
4. Murray, C. B., Kagan, C. R., and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
5. Vioux, A., Chem. Mater. 9, 2292 (1997).Google Scholar
6. Niederberger, M., Garnweitner, G., Pinna, N., and Neri, G., Prog. Solid State Chem. 33, 59 (2005).Google Scholar
7. Jun, Y. W., Choi, J. S., and Cheon, J., Angew. Chem. Int. Ed. 45, 3414 (2006).Google Scholar
8. Garnweitner, G. and Niederberger, M., J. Am. Ceram. Soc. 89, 1801 (2006).Google Scholar
9. Donega, C. de Mello, Liljeroth, P., and Vanmaekelbergh, D., Small 1, 1152 (2005).Google Scholar
10. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y. F., Ohta, T., Yasuhara, M., Suzuki, K., and Yamamoto, K., Nano Lett. 4, 2163 (2004).Google Scholar
11. Niederberger, M., Garnweitner, G., Buha, J., Polleux, J., Ba, J., and Pinna, N., J. Sol-Gel. Sci. Technol. 40, 259 (2006).Google Scholar
12. Niederberger, M., Garnweitner, G., Ba, J., Polleux, J., and Pinna, N., Int. J. Nanotechnol. in print.Google Scholar
13. Niederberger, M., Pinna, N., Polleux, J., and Antonietti, M., Angew. Chem. Int. Ed. 43, 2270 (2004).Google Scholar
14. Ba, J., Rohlfing, D. Fattakhova, Feldhoff, A., Brezesinski, T., Djerdj, I., Wark, M., and Niederberger, M., Chem. Mater. 18, 2848 (2006).Google Scholar
15. Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M., and Niederberger, M., Angew. Chem. Int. Ed. 45, 261 (2006).Google Scholar
16. Pinna, N., Garnweitner, G., Beato, B., Niederberger, M., and Antonietti, M., Small 1, 112 (2005).Google Scholar
17. Niederberger, M., Garnweitner, G., Pinna, N., and Antonietti, M., J. Am. Chem. Soc. 126, 9120 (2004).Google Scholar
18. Niederberger, M. and Antonietti, M., Nonaqueous Sol-Gel Routes to Nanocrystalline Metal Oxides, in Nanomaterials Chemistry: Recent Developments and New Directions, ed. Rao, C. N. R., Müller, A., and Cheetham, A. K., Wiley-VCH, Weinheim, 2007.Google Scholar
19. Niederberger, M., Bartl, M. H., and Stucky, G. D., J. Am. Chem. Soc. 124, 13642 (2002).Google Scholar
20. Polleux, J., Antonietti, M., and Niederberger, M., J. Mater. Chem. 16, 3969 (2006).Google Scholar
21. Niederberger, M. and Cölfen, H., Phys. Chem. Chem. Phys. 8, 3271 (2006).Google Scholar
22. Ba, J., Feldhoff, A., D. Fattakhova Rohlfing, Wark, M., Antonietti, M., and Niederberger, M., Small 3, 310 (2007).Google Scholar
23. Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M., Adv. Mater. 16, 436 (2004).Google Scholar
24. Polleux, J., Pinna, N., Antonietti, M., Hess, C., Wild, U., Schlögl, R., and Niederberger, M., Chem. Eur. J. 11, 3541 (2005).Google Scholar
25. Ba, J., Polleux, J., Antonietti, M., and Niederberger, M., Adv. Mater. 17, 2509 (2005).Google Scholar
26. Deshpande, A. S., Pinna, N., Smarsly, B., Antonietti, M., and Niederberger, M., Small 1, 313 (2005).Google Scholar
27. Deshpande, A. S., Pinna, N., Beato, B., Antonietti, M., and Niederberger, M., Chem. Mater. 16, 2599 (2004).Google Scholar
28. Deshpande, A. S. and Niederberger, M., Microporous Mesoporous Mater. 101, 413 (2007).Google Scholar
29. Mastalir, A., Frank, B., Szizybalski, A., Soerijanto, H., Deshpande, A. S., Niederberger, M., Schomöcker, R., Schlögl, R., and Ressler, T., J. Catal. 230, 464 (2005).Google Scholar
30. Buha, J., Djerdj, I., Antonietti, M., and Niederberger, M., submitted.Google Scholar