Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T20:44:01.681Z Has data issue: false hasContentIssue false

Metal Electrodes Work Function Measurement at Deca-Nanometer Scale using Kelvin Probe Force Microscope: a Step Forward to the Comprehension of Deposition Techniques Impact on Devices Electrical Properties

Published online by Cambridge University Press:  01 February 2011

Nicolas Gaillard
Affiliation:
[email protected], STMicroelectronics, BEOL Materials, 850, rue Jean Monnet, Crolles, N/A, 38926, France, +33476926381
Denis Mariolle
Affiliation:
[email protected], CEA/GRE, CEA-DRT-LETI, 17 rue des martyrs, Grenoble, N/A, 38054, France
Francois Bertin
Affiliation:
[email protected], CEA/GRE, CEA-DRT-LETI, 17 rue des martyrs, Grenoble, N/A, 38054, France
Mickael Gros-Jean
Affiliation:
[email protected], STMicroelectronics, 850, rue Jean Monnet, Crolles, N/A, 38926, France
Ahmad Bsiesy
Affiliation:
[email protected], Spintec Laboratory, CEA-DRFMC, 17 rue des martyrs, Grenoble, N/A, 38054, France
Get access

Abstract

In this letter, we report on Work Function (WF) measurements performed at deca-nanometer scale on various metals using Kelvin probe Force Microscope (KFM). We first demonstrated the relationship between the WF value and the grain crystallographic orientation by combining KFM and Electron Back Scattered Diffraction (EBSD) performed over the same Cu area. Once this relationship was established, KFM was used to provide, in addition to WF value, crystallographic properties of TiN PVD films grown on various substrates. Finally we characterized the effect of N2/H2 plasma treatment on the WF of TiN grown by CVD. In the latter case, the modification of the bulk chemical potential by post-treatment was proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lujan, G. S. et al., Proceedings of the 32nd ESSDERC, 583 (2002).Google Scholar
2. Alshareef, H. N. et al., Appl., Phys. Lett., 87, 052109 (2005).Google Scholar
3. Yagashita, A. et al., IEEE Trans. Electron Devices, 48, 1604 (2001).Google Scholar
4. Sugimura, H. et al., Appl. Phys. Lett. 80, 14591461 (2002).Google Scholar
5. Mulliken, R. S., J. Chem. Phys., 2, 782 (1934).Google Scholar
6. Michaelson, H. B., J. Res. Develop., 22, No. 1 (1978).Google Scholar
7. Westlinder, J. et al., Microelectron. Eng., 75, 389 (2004).Google Scholar
8. Schaeffer, J. K. et al., as discussed at the 2005 IEEE SISC, Arlington, VA, USA. Google Scholar
9. Smoluchowski, R., Physical Review 60, 661674 (1941).Google Scholar
10. Eastment, R. M. et al., Journal of Physics F: Metal Physics, 1738–1745 (1973).Google Scholar
11. Chelvayohan, M. et al., J. Phys. C: Solid State Phys. 15, 2305 (1982).Google Scholar
12. Gartland, P.O et al., Phys. Rev. Lett., 28, 738 (1972).Google Scholar
13. Hobbs, C. et al., IEEE Trans. Electron Devices, 51, No. 6, 971 (2004).Google Scholar
14. Ren, C. et al., IEEE Electron Device Letters, 25, No. 3, 123 (2004).Google Scholar
15. Schmutz, P. et al., J. Electrochem. Soc., 145, 7 (1998).Google Scholar
16. Gaillard, N. et al., as discussed at the 2005 IEEE SISC, Arlington, VA, USA. Google Scholar
17. Bajolet, A. et al., as discussed at the 2006 MAM conference, O9.03, Grenoble, France.Google Scholar