Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:46:31.472Z Has data issue: false hasContentIssue false

Metal Atom Routes to Metal-Based Clusters in Polymers

Published online by Cambridge University Press:  25 February 2011

Mark P. Andrews
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07074
Mary E. Galvin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07074
Sharon A. Heffner
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07074
Get access

Abstract

Past syntheses of polymer composites have largely evolved from chemical reduction or thermal decomposition of organometallic or inorganic precursor molecules in polymers, or plasma and thermal co-deposition of metal vapors and carbonaceous free radicals. Our approach involves the site-specific capture of metal atoms deposited in vacuum to give isolated, high energy mononuclear organometallic centers within a polymer film. These centers can be converted at ambient or sub-ambient temperatures (ie, below the polymer glass transition temperature) to, for example, metal oxide microclusters.

We describe the results of our studies of a prototypical system involving chromium atoms and their conversion to corundum-type oxide microclusters in arene-functionalized polymer films. Thus Cr was deposited into 150 K liquid tetrahydrofuran solutions of polystyrene or poly(styrene-isoprene-styrene) triblock, spun in vacuo as thin films on the surface of a rotating glass cryostat. Evidence from epr spectrscopy shows that the resulting polymer-anchored (inter/intra-chain) bis(arene)Cr sandwich complex is locally mobile in the macroscopically rigid film at room temperature. The Cr atom is discharged from the rings by subsequent reaction with oxygen diffused into the film. Although α Cr2 O3 is a classic twosublevel antiferromagnet that is not epr active above 308 K, we observe an intense signal even at 77 K in these films. Cr2O3 microclusters are indicated, and these are confirmed by in situ measurements of the oxidation and aggregation process.

The metal atom methodology has also been used to synthesize silver microsphere/polymer composites. With quadratic electrooptic phase modulation, these composites were found to show a third order susceptibility enhanced by coupling the dipolar surface plasmon mode of the particles with incident light.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See Symposium G, Materials Research Symposium meeting, Boston, Nov. 1988.Google Scholar
2. Andrews, M. P. and Ozin, G. A., J. Phys. Chem., 90, 2029 (1986).Google Scholar
3. Andrews, M. P., “Using Metal Atoms and Molecular High Temperature Species in New Materials Synthesis”, in Experimental Organometallic Chemistry, Wayda, A. L. and Darensbourg, M., eds., ACS Symposium Series 357, ch. 7, p. 158 (1987); M. P. Andrews and G. A. Ozin, Chemistry of Materials, in press.Google Scholar
4. Andrews, M. P., in Encyclopedia of Polymer Engineering and Science, 2nd ed., vol.9 (John Wiley and Sons, New York, 1987).Google Scholar
5. Andrews, M. P., Galvin, M. E. and Heffner, S. A., J. Am. Chem. Soc., submitted for publication.Google Scholar
6. Improved colloid stability is achieved by first dissolving the Ag/PMMA in THF. PGMEA (to give a 35:65 v/v THF:PGMEA ratio) is then added at the final step, and mixed vigorously. Films must be spun immediately from this solvent combination.Google Scholar
7. Singer, K.D., Kuzyk, M.G., Holland, W.R., Sohn, J.E., Lalama, S.J., Comizzoli, R.B., Katz, H.E. and Schilling, M.L., Appl. Phys. Lett., to be published.Google Scholar
8. Kuzyk, M.G. and Dirk, C.W., unpublished.Google Scholar
9. Skell, P. S., Williams-Smith, D. L. and McGlinchey, M. J., J. Am. Chem. Soc., 95, 3337 (1973).CrossRefGoogle Scholar
10. Andrews, M.P.; Mattar, S.M.; Ozin, G.A.O. J. Phys. Chem. 1986, 90, 1037; Cloke, F.G.N.; Dix, A.N.; Green, J.C., Perutz, R.N.; Seddon, E. Organometaiics 1983, 2, 1150; Weber, J.; Geoffrey, M.; Goursot, A.; Penigault, E. J. Am. Chem. Soc. 1978, 100, 3995; Wittmann, G. T.W.; Krynauw, G. N.; Lotz, S. Ludwig, W. J. Organomet. Chem. 1985, 293, C33.CrossRefGoogle Scholar
11. Warren, K. D. in: Structure and Bonding, 27, 45 (1976).CrossRefGoogle Scholar
12. Elschenbroich, Ch., Mockel, R., Zennneck, U., and Clack, D. W., Ber. Bunsenges. Phys. Chem. 83, 1008 (1979).CrossRefGoogle Scholar
13. Prins, R., and Reinders, F. J., Chem. Phys. Lett. 3, 45 (1969).CrossRefGoogle Scholar
14. Alcksandrov, Y., Fomin, V. M., and Lunin, A. V., Kinetics and Catalysis 531, 531 (1975).Google Scholar
15. Fomin, V. M., Aleksandrov, Y. A., and Umilin, V. A., J. Organomet. Chem. 61, 267 (1973).CrossRefGoogle Scholar
16. Nazar, L. F., Ph.D. Dissertation, University of Toronto, 1985.Google Scholar
17. Srivastava, K. G. and Srivastava, R., Nuovo Cimento 39, 71 (1965).CrossRefGoogle Scholar
18. Pintschovius, L. and Gunsser, W., Zeitsch. Phys. Chem. 100, 83 (1976).Google Scholar
19. Drager, K., Z. Naturforsch. 38a, 1223 (1983).CrossRefGoogle Scholar
20. O'Reilly, D. E. and MacIver, D. S., J. Phys. Chem. 66, 276 (1962).CrossRefGoogle Scholar
21. Drager, K., Ber. Busenges. Phys. Chem. 79, 996 (1975); K. Drager and R. Gerling, Phys. Stat. Sol. 38a, 547 (1976).CrossRefGoogle Scholar
22. Drager, K. and Gerling, R., Surf. Sci. 106, 427 (1981).Google Scholar
23. Ellison, A. and Sing, K. S., J. Chem. Soc. Faraday Trans. 74, 2807 (1978).CrossRefGoogle Scholar
24. Newnham, R. E. and de Haan, Y. M., Z. Kristall. 117, 235 (1962).CrossRefGoogle Scholar
25. Stone, F. S. and Vickerman, J. C., Trans. Faraday Soc. 67, 316 (1971).CrossRefGoogle Scholar
26. Poole, C. P., Kehl, W. L. and Maclver, D. S., J. Catal. 1, 407 (1962).CrossRefGoogle Scholar
27. Andrews, M. P.; Galvin, M. E.; Heffner, S. A. to be published.Google Scholar
28. Hache, F., Ricard, D. and Flytzanis, C., J. Opt. Soc. Am. B. 3, 1647 (1986); D. Ricard, Ph. Roussignol and C. Flytzanis, Opt. Lett., 10, 511 (1985).CrossRefGoogle Scholar
29. Andrews, M. P. and Kuzyk, M. J., Appl. Phys. Lett., submitted for publication.Google Scholar
30. Kreibig, U. in Contribution of Clusters Physics to Materials Science and Technology, Devenas, J. and Rabette, P.M., eds., NATO ASI Series 104, Martinus Nijhoff Publ., Dordrecht (1986).Google Scholar