Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T15:25:46.304Z Has data issue: false hasContentIssue false

A mesoscale strength model for silica-filled PDMS

Published online by Cambridge University Press:  21 March 2011

D. E. Hanson*
Affiliation:
Theoretical Division, Los Alamos National Laboratory Los Alamos, NM, 87545
Get access

Abstract

We present a mesoscale model that describes the tensile stress of silica-filled polydimethylsiloxane (PDMS) under elongation. Atomistic simulations of a single chain of PDMS, interacting with itself and/or a hydroxylated silica surface provide estimates of the microscopic forces required to stretch or uncoil a chain of PDMS, or detach it from a silica surface Using these results, we develop a mesoscale, inter-particle strength model for uncrosslinked, silica-filled PDMS. The strength model includes these atomistic forces, as determined from the simulations, a small entropic component, and a Gaussian probability distribution to describe the distribution of chain lengths of PDMS strands connecting two silica particles and the chain lengths in the free ends. We obtain an analytic stress/strain expression whose predictions agree with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cochrane, H. and Lin, C. S., Rubber Chem. Technol. 66, 48– (1993).Google Scholar
2 Warrick, E. L. and Lauterbur, P. C., Indust. Eng. Chem. 47, 486, 491 (1955).Google Scholar
3 Aranguren, M. I., Mora, E., Macosko, C. W., and Saam, J., Rubber Chem. Technol. 67, 820833 (1994).Google Scholar
4 Smallwood, H. M., J. Appl. Phys. 15, 758 (1944).Google Scholar
5 Chahal, R. S. and L. Pierre, E. S., Macromol. 2, 193– (1969).Google Scholar
6 Molecular, I. Simulations, (Molecular Simulations, Inc., San Diego, 1996).Google Scholar
7 Hanson, D. E., J. Chem. Phys. 113, 7656– (2000).Google Scholar
8 Gennes, P.-G. d., Scaling Concepts in Polymer Physics (Cornell University Press, 1979).Google Scholar
9 Treloar, L. R. G., The Physics of Rubber Elasticity (Oxford University Press, 1975).Google Scholar
10 Galanti, A. V. and Sperling, L. H., Polym. Eng. Sci. 10, 177, 184 (1970).Google Scholar
11 Galanti, A. V. and Sperling, L. H., J. Appl. Pol. Sci. 14, 2785, 2796 (1970).Google Scholar
12 Galanti, A. V. and Sperling, L. H., Polymer Lett. 8, 115, 120 (1970).Google Scholar
13 Boonstra, B. B., Cochrane, H., and Dannenberg, E. M., Rubber Chem. Technol. 48, 558 (1975).Google Scholar