Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:12:10.569Z Has data issue: false hasContentIssue false

Mesoscale modeling of cement matrix using the concept of building block

Published online by Cambridge University Press:  12 February 2015

Denvid Lau*
Affiliation:
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Zechuan Yu*
Affiliation:
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong.
Oral Buyukozturk
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Get access

Abstract

Calcium silicate hydrate (C-S-H) gel is the cohesive phase in cement paste and critically controls the cement hydration. Atomistic models can reproduce reasonable structural and mechanical properties of C-S-H gel at the nano scale. However, the length and time scale of such all-atom modeling technique are restrained by limited computing power. Under this context, coarse-grained modeling technique emerges as a useful alternative for investigating cement paste at extended length and time scale. Here, we regard the building block of cement as ellipsoid and develop a coarse-grained model of cement matrix based on the Gay-Berne (GB) potential. Emphasis of the present paper is on the parameterization and interpretation of the GB potential formula.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bullard, J. W.; Jennings, H. M.; Livingston, R. A.; Nonat, A.; Scherer, G. W.; Schweitzer, J. S.; Scrivener, K. L.; Thomas, J. J., Mechanisms of cement hydration. Cement and Concrete Research 2011, 41 (12), 12081223.CrossRefGoogle Scholar
Jennings, H. M., A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research 2000, 30 (1), 101116.CrossRefGoogle Scholar
Allen, A. J.; Thomas, J. J.; Jennings, H. M., Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature materials 2007, 6 (4), 311316.CrossRefGoogle ScholarPubMed
Dolado, J. S.; Van Breugel, K., Recent advances in modeling for cementitious materials. Cement and Concrete Research 2011, 41 (7), 711726.CrossRefGoogle Scholar
Pellenq, R. J.-M.; Kushima, A.; Shahsavari, R.; Van Vliet, K. J.; Buehler, M. J.; Yip, S.; Ulm, F.-J., A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences 2009, 106 (38), 1610216107.CrossRefGoogle ScholarPubMed
Masoero, E.; Del Gado, E.; Pellenq, R.-M.; Ulm, F.-J.; Yip, S., Nanostructure and nanomechanics of cement: polydisperse colloidal packing. Physical review letters 2012, 109 (15), 155503.CrossRefGoogle ScholarPubMed
Gay, J. G.; Berne, B. J., Modification of the overlap potential to mimic a linear site–site potential. The Journal of Chemical Physics 1981, 74 (6), 33163319.CrossRefGoogle Scholar
Ebrahimi, D.; Whittle, A. J.; Pellenq, R. J.-M., Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. The Journal of Chemical Physics 2014, 140 (15), 154309.CrossRefGoogle Scholar
Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics 1995, 117 (1), 119.CrossRefGoogle Scholar
Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A.; Parrinello, M., PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications 2009, 180 (10), 19611972.CrossRefGoogle Scholar
Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G., Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. The Journal of Physical Chemistry B 2004, 108 (4), 12551266.CrossRefGoogle Scholar
Hou, D.; Zhu, Y.; Lu, Y.; Li, Z., Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: A molecular dynamics study. Materials Chemistry and Physics 2014, 146 (3), 503511.CrossRefGoogle Scholar
van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., ReaxFF: A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A 2001, 105 (41), 93969409.CrossRefGoogle Scholar
Ulm, F. J.; Vandamme, M.; Bobko, C.; Alberto Ortega, J.; Tai, K.; Ortiz, C., Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. Journal of the American Ceramic Society 2007, 90 (9), 26772692.CrossRefGoogle Scholar