Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:29:10.738Z Has data issue: false hasContentIssue false

Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

Published online by Cambridge University Press:  10 February 2011

R. F. Haglund Jr.
Affiliation:
Vanderbilt University, Nashville TN 37235
C. N. Afonso
Affiliation:
Instituta de Optica, CSIC, Madrid, Spain
L. C. Feldman
Affiliation:
Vanderbilt University, Nashville TN 37235
F. Gonella
Affiliation:
CNR-INFM, Universitá di Padova, Padova, Italy
G. Luepke
Affiliation:
Vanderbilt University, Nashville TN 37235
R. H. Magruder
Affiliation:
Vanderbilt University, Nashville TN 37235
P. Mazzoldi
Affiliation:
CNR-INFM, Universitá di Padova, Padova, Italy
D. H. Osborne
Affiliation:
Vanderbilt University, Nashville TN 37235
J. Solis
Affiliation:
Instituta de Optica, CSIC, Madrid, Spain
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have all been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of corplex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects — and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buchal, I. C., Withrow, S. P., White, C. W. and Poker, D. B., Ann. Rev. Mat. Sci. 24 (1994) 125.Google Scholar
2. Mazzoldi, P., Arnold, G. W., Battaglin, G., Gonella, F. and Haglund, R. F. Jr., J. Nonlinear Opt. Phys. and Matls. 5 (1996), 285.Google Scholar
3. De, G., Tapfer, L., Catalano, M., Battaglin, G., Gonella, F., Mazzoldi, P. and Haglund, R. F. Jr., Appl. Phys. Lett. 68 (1996) 3820.Google Scholar
4. Liao, H. B., Xiao, R. F., Fu, J. S., Yu, P., Wong, G. K. L. and Sheng, P., Appl. Phys. Lett. 70 (1997), 13. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki and A. Nakamura, J. Appl. Phys. 79 (1996) 1244.Google Scholar
5. Ballesteros, J. M., Serna, R., Solis, J., Afonso, C. N., Petford-Long, A. K., Osborne, D. H. and Haglund, R. F., Jr., Appl. Phys. Lett. 71 (1997) 2409.Google Scholar
6. Hache, F., Ricard, D. and Flytzanis, C., J. Opt. Soc. Am. B 3 (1986) 1647.Google Scholar
7. Schmitt-Rink, S., Miller, D. A. B., and Chemla, D. S., Phys. Rev. B 35 (1987) 8113.Google Scholar
8. Tokizaki, T., Nakamura, A., Kaneko, S., Uchida, K., Omi, S., Tanji, H. and Asahara, Y., Appl. Phys. Lett. 65 (1994) 941.Google Scholar
9. Perner, M., Bost, P., Lemmer, U., von Plessen, G., Feldmann, J., Becker, U., Mennig, M., Schmitt, M. and Schmidt, H., Phys. Rev. Lett. 78 (1997) 2192.Google Scholar
10. Bigot, J.-Y., Merle, J.-C., Cregut, O. and Daunois, A., Phys. Rev. Lett. 75 (1995) 4702.Google Scholar
11. Haglund, R. F. Jr., Yang, Li, Osborne, D. H., Hosono, H., Whitc, C. W. and Zuhr, R. A., Appl. Phys. A 62 (1996) 403.Google Scholar
12. Stroud, D. and Wood, V. E., J. Opt. Soc. Am. B 6 (1989) 778.Google Scholar
13. Stroud, D. and Hui, P. M., Phys. Rev. B 37 (1988) 8719.Google Scholar
14. Hache, F., Ricard, D. and Girard, C., Phys. Rev. B 38 (1988) 7990.Google Scholar
15. Weber, M. J., Milam, D., , D. and Smith, W. L., L., W., Opt. Eng. 17 (1978) 463.Google Scholar
16. Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R., , R. and Seaton, C. T., IEEE J. Lightwave Tech. 6 (1988) 953.Google Scholar
17. Flytzanis, C., Hache, F., Klein, M. C., Ricard, D. and Roussignol, Ph., Prog. Optics 29 (1991) 323.Google Scholar
18. Mizrahi, V., DeLong, K. W., Stegeman, G. I., Saifi, M. A. and Andrejco, M. J., Opt. Lett. 14 (1989) 1140.Google Scholar
19. Aitchison, J. W., Oliver, M. K., Kapon, E., Colas, E., and Smith, P. W. E., Appl. Phys. Lett. 56 (1990), 1305.Google Scholar
20. DeLong, K. W., Mizrahi, V., Stegeman, G. I., Saifi, M. A., and Andrejco, M. J., Appl. Phys. Lett. 56 (1990) 1394.Google Scholar
21. Stegeman, G. I. and Stolen, R. H., J. Opt. Soc. Am. B 6 (1989) 652.Google Scholar
22. Friberg, S. R. and Smith, P. W., IEEE J. Quantum. Electron. 23 (1987) 2089.Google Scholar