Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-28T01:37:04.844Z Has data issue: false hasContentIssue false

The Merits of Integrated Processing for Gate Stack Formation

Published online by Cambridge University Press:  15 February 2011

John M. Grant*
Affiliation:
Sharp Microelectronics Technology, Inc., 5700 NW Pacific Rim Boulevard, Camas, WA 98607
Get access

Abstract

This work presents the results of process development in a cluster tool designed for the gate stack process of cleaning, gate oxidation, and polysilicon chemical vapor deposition. The cluster tool connects three single wafer process chambers together with a vacuum transfer chamber. The purpose of this work was to test the feasibility of the single wafer processing gate oxidation cluster tool from an electrical performance standpoint, Cleaning was performed using a gas/vapor phase process, and the results using a standard oxide indicate that gas/vapor phase cleaning is at the least comperable and possibly more effective at contamination removal than the standard RCA wet cleaining process. The oxidation was performed using rapid thermal processing, and the effect of adding nitrogen to the oxide by oxidation in an N2O containing ambient was tested. The results indicated that oxides at least at good as those grown in a conventional furnace could be produced in the cluster tool, and the nitrogen at the oxide-substrate interface improves the reliability of the oxide if the nitrogen concentration is kept below 1 atomic %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kern, W. and Puotinen, D.A., RCA Review 30, 187 (1970).Google Scholar
2. Kern, W., J. Electrochem. Soc. 137, 1887 (1990).Google Scholar
3. Wong, M., Moslehi, M.M., and Reed, D.W., J. Electrochem. Soc. 138, 1799 (1991).Google Scholar
4. Wong, M., Moslehi, M.M., and Bowling, R.A., J. Electrochem. Soc. 140, 205 (1993).Google Scholar
5. Prom, J.L., Castagne, J., Sarrabayrouse, G., and Munoz-Yague, A., IEEE Proc. I135, 20 (1988).Google Scholar
6. Prom, J.L., Morfuli, P., Kassmi, K., Pananakakis, G., and Sarrabayrouse, G., IEEE Proc. G 138, 321 (1991).Google Scholar
7. Izumi, A., Matsuka, T., Takeuchi, T., and Yamano, A., in Proceedings of the Second International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, edited by J., Ruzyllo and R., Novak (ECS Proceedings 92–12, 1992) p. 260.Google Scholar
8. Ruzyllo, J., Torek, K., Daffron, C., Grant, R., and Novak, R., J. Electrochem. Soc.™™ 140, L64 (1993).Google Scholar
9. Butterbaugh, J.W. (private communication).Google Scholar
10. Fitch, J.T., in Materials Research Society Symposium Proceedings 259, 427 (1992).Google Scholar
11. Murali., V. Wu, A.T., Chatterjee, A.K., and Fraser, D.B., IEEE Trans. on Semicond. Manufacturing 5, 214 (1992).Google Scholar
12. Resnick, A., Kamieniecki, E., Philipossian, A., and Jackson, D., in Proceedings of the First International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, edited by J., Ruzyllo and R.E., Novak (ECS Proceedings 90–9, 1990) p. 335.Google Scholar
13. Resnick, A., Kamieniecki, E., Phelps, H., and Jackson, D., in Proceedings of the1990 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, (IEEE, 1990) p. 117.Google Scholar
14. Grant, J.M. and Stecker, G., presented at the Spring 1994 Electrochemical Society Meeting, San Francisco, CA, May 1994.Google Scholar
15. Gompf, D. (private communication).Google Scholar
16. Hwang, H., Ting, W., Kwong, D.L., and Lee, J. in EDMA Tech, Dig,, (1990), p. 421.Google Scholar
17. Kruger, D., Kurps, R., and Weidner, G., Semicond Sci. Technol. 8, 1706 (1993).Google Scholar
18. Yount, J.T., Lenahan, P.M., and Krick, J.T., J. Appl. Phys. 76 (3), 17541758, 1 August 1994.Google Scholar
19. Okada, Y., Tobin, P.J., Reid, K.G., Hegde, R.I., Maiti, B., and Ajuria, S.A., IEEE Trans. Electron. Dev 41 (9), 16081613, September 1994.Google Scholar
20. Okada, Y., Tobin, P.J., Reid, K.G., Hegde, R.I., Maiti, B., and Ajuria, S.A. in 1994 Symposium on VLS1 Technology Dhest of Technical Papers, (1994), p. 105.Google Scholar
21. Bhat, M., Han, L.K., Wristers, D., Yan, J., and Kwong, D.L., Appl. Phys. Lett. 66 (10), 12251227, 6 March 1995.Google Scholar
22. Kuiper, A.E.T., Pomp, H.G., Asveld, P.M., Bik, W. Arnold, and Habraken, F.H.P.M., Appl. Phys. Lett. 61 (9), 10311033, 31 August 1992.Google Scholar
23. Carr, E.C. and Buhrman, R.A., Appl. Phys. Lett. 63 (1), 5456, 5 July 1993.Google Scholar
24. Carr, E.C., Ellis, K.A., and Buhrman, R.A., Appl. Phys. Lett. 66 (12), 14921494, 20 March 1995.Google Scholar
25. Chao, T.S., Chen, W.H., Sun, S.C., and Chang, H.Y., J. Electrochem. Soc. 140 (11), L160–L161, November 1993.Google Scholar
26. Tobin, P.J., Okada, Y., Lahkotia, V., Ajuria, S.A., Feil, W.A., And Hegde, R.I., in 1993 Symposium on VLSI Technology Digest of Technical Papers, (1993), pp. 51–52.Google Scholar
27. Yoon, G.W., Joshi, A.B., Kim, J., Lo, G.Q., and Kwong, D.L., IEEE Electron. Dev. Lett. 13 (12), 606608, December 1992.Google Scholar
28. Joshi, A.B., Yoon, G., Kim, J., Lo, G.Q., and Kwong, D.L., IEEE Trans. Electron. Dev. 40 (8), 14371445, August 1993.Google Scholar
29. Green, M.L., Brasen., D. Evans-Lutterodt, K.W., Feldman, L.C., Krisch, K., Lennard, W., Tang, H.-T., Manchanda, L., and Tang, M.-T., Appl. Phys. Lett. 65 (7), 848850, 15 August 1994.Google Scholar
30. Yount, J.T., Lenahan, P.M., and Wyatt, P.W., J. Appl. Phys. 77 (2), 699705, 15 January 1995.Google Scholar