Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T18:05:59.374Z Has data issue: false hasContentIssue false

The Melting of Amorphous Si

Published online by Cambridge University Press:  26 February 2011

J. M. Poate
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey
P. S. Peercy
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico
M. O. Thompson
Affiliation:
Cornell University Ithaca, New York
Get access

Abstract

The prediction by Turnbull and his colleagues that amorphous Si and Ge undergo first order melting transitions at temperatures Taℓ substantially beneath the crystalline melting temperature Tcℓ has stimulated much work. Structural, calorimet:ic and transient conductance measurements show that, for Si, Tcℓ – Taℓ lies in the range 225–250°K. Studies of the pulsed laser melting of the Si amorphous-liquid transition have resulted in the following findings, an estimate of the undercooling rate of 15°K/m/sec, an understanding of the mechanism mediating explosive crystallization, the formation of internal melts and segregation of dopants at the liquid-amorphous interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E., and Golovchenko, J. A. (1978). Appl. Phys. Lett. 33, 437.Google Scholar
Baeri, P., Foti, G., Poate, J. M., and Cullis, A. G., (1980). Phys.Rev. Lett. 45, 2036.Google Scholar
Bagley, B. G., and Chen, H. S. (1979). In “Laser-Solid Interactions and Laser Processing -1978” (Ferris, S. D., Leamy, H. J. and Poate, J. M. eds.) AlP Conf. Proc., 50, p. 97.Google Scholar
Campisano, S. U., Jacobson, D. C., Poate, J. M., Cullis, A. G., and Chew, N. G. (1985). Appl. Phys. Lett. 46, 846.Google Scholar
Chen, H. S., and Turnbull, D. (1969). J. Appl. Phys. 40, 4214.Google Scholar
Cullis, A. G., Webber, H. C., and Chew, N. G. (1980). Appl. Phys. Lett. 36, 547. Google Scholar
Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C. (1985). J. Appl. Phys. 57, 1795.Google Scholar
Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N., and Peercy, P. S. (1982). Phys. Rev. Lett. 48, 33. CrossRefGoogle Scholar
Galvin, G. J., Mayer, J. W., and Peercy, P. S. (1985). Appl.Phys. Lett. 46,644.Google Scholar
Liu, P. L., Yen, R., Bloembergen, N., and Hodgson, R. T. (1979). Appl. Phys. Lett. 34, 864.Google Scholar
Olson, G. L. (1985). Mat. Res. Soc. Symp. Proc. 35, 25. Google Scholar
Peercy, P. S., and Thompson, M. O (1985a). Mat. Res. Soc. Symp. Proc. 35, 53. Google Scholar
Peercy, P. S., Thompson, M.O., and Tsao, J. Y. (1985b). Appl. Phys. Lett. 47, 244.Google Scholar
Spaepen, F. and Turnbull, D., (1979). In “Laser-Solid Interactions and Laser Processing -1978” (Ferris, S. D., Leamy, H. J. and Poate, J. M. ed.) AlP Conf. Proc., 50, p. 73.Google Scholar
Thompson, M. O., Mayer, J. W., Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M., and Jacobson, D. C. (1983). Phys. Rev. Lett. 50, 986.Google Scholar
Thompson, M.O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G. (1984). Phys. Rev. Lett. 52, 2360.Google Scholar
Thompson, M. O., Peercy, P. S., Tsao, J. Y., and Aziz, M. J. (1986). Appl. Phys. Lett., 49, 558.Google Scholar
Tsu, R., Hodgson, R. T., Tan, T. Y., and Baglin, J. E. E. (1979).Phys. Rev. Lett. 42, 1356. CrossRefGoogle Scholar
Turnbull, D. (1982). Mat. Res. Soc. Symp. Proc. 7, 103.Google Scholar