Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:27:39.274Z Has data issue: false hasContentIssue false

Melting, Freezing, Diffusion, and Colescence of Gold Nanoclusters

Published online by Cambridge University Press:  10 February 2011

Laurent J. Lewis
Affiliation:
Département de physique et GCM, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
Pierre Deltour
Affiliation:
Département de physique des matériaux, Université Claude-Bernard Lyon-I, 69622 Villeurbanne Cedex, France
Pablo Jensen
Affiliation:
Département de physique des matériaux, Université Claude-Bernard Lyon-I, 69622 Villeurbanne Cedex, France
Jean-Louis Barrat
Affiliation:
Département de physique des matériaux, Université Claude-Bernard Lyon-I, 69622 Villeurbanne Cedex, France
Get access

Abstract

We present a detailed molecular-dynamics study of the coalescence of gold nanoclusters within the framework of the embedded-atom method. We find macroscopic sintering theories to be unable to describe the coalescing behavior of two small clusters, a failure we attribute to the fact that the nanocrystals are faceted; this has important consequences for the morphology of cluster-assembled materials. We also examine the static and dynamic properties of a 249-atom gold cluster on nickel surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wen, J.M. et al., Phys. Rev. Lett. 73, 2591 (1994);Google Scholar
Morgenstern, K. et al., Phys. Rev. Lett. 74, 2058 (1995);Google Scholar
Kellogg, G.L., Phys. Rev. Lett. 73, 1833 (1994) and references therein.Google Scholar
2.See for instance Röthlisberger, U., Andreoni, W., and Parrinello, M., Phys. Rev. Lett. 72, 665 (1994);Google Scholar
Charlier, J.C., DeVita, A., Blase, X., and Car, R., Science 275, 646 (1997).Google Scholar
3. Flüelli, M., Buffat, P.A., and Borei, J.-P., Surf. Sci. 202, 343 (1988).Google Scholar
4. Buffat, Ph. and Borei, J.-P., Phys. Rev. A 13, 2287 (1976);Google Scholar
Borei, J-P., Surf. Sci. 106, 1 (1981).Google Scholar
5. Perez, A., Mélinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J., Bardotti, L., Martet, C., Treilleux, M., Broyer, M., Pellarin, M., Vialle, J.L., and Palpant, B. J. Phys. D 30, 1 (1997).Google Scholar
6. Bardotti, L., Jensen, P., Treilleux, M., Hoareau, A., and Cabaud, B., Phys. Rev. Lett. 74, 4694 (1995); Surf. Sci. 367, 276 (1996).Google Scholar
7. Deltour, P., Jensen, P., and Barrat, J.-L., Phys. Rev. Lett. 78, 4597 (1997); also, submitted to Phys. Rev. B (1997).Google Scholar
8. Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983 (1986).Google Scholar
9. Daw, M.S., Foiles, S.M., and Baskes, M.I., Materials Science Reports 9, 251 (1993);Google Scholar
Foiles, S.M. in Equilibrium Structure and Properties of Surfaces and Interfaces, ed. by Gonis, A. and Stocks, G.M. (Plenum, New York, 1992) p. 89.Google Scholar
10. Boisvert, G., Lewis, L.J., Puska, M., and Nieminen, R., Phys. Rev. B 52, 9078 (1995).Google Scholar
11. Lewis, L.J., Jensen, P., and Barrat, J.-L., Phys. Rev. B 56, 2248 (1997).Google Scholar
12. Zhu, H. and Averback, R.S., Phil. Mag. Lett. 73, 27 (1996).Google Scholar
13. Nichols, F.A. and Mullins, W.W., J. Appl. Phys., 36, 1826 (1965);Google Scholar
Nichols, F.A., J. Appl. Phys. 37, 2805 (1966).Google Scholar
14. Beaudet, Y., Lewis, L.J. and Persson, M., Phys. Rev. B 50, 12 084 (1994)Google Scholar