Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T19:39:59.158Z Has data issue: false hasContentIssue false

Melting and Laser Annealing in Semiconductors using 0.485 μm and 0.193 μm Pulsed Lasers*

Published online by Cambridge University Press:  15 February 2011

J. Narayan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
J. Fletcher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
R. E. Eby
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

Annealing of displacement damage, the dissolution of boron precipitates, the formation of constitution supercooling cells, and the broadening of dopant profiles have been studied in laser annealed silicon. These samples were irradiated with a dye laser (λ = 0.485 µm, τ = 9 ns, E = 0.7–1.2 J cm−2) and an Excimer laser (λ = 0.193 µm, τ= 9 ns, E = 0.5–0.7 J cm−2) pulses. These results can be consistently interpreted by invoking melting during pulsed laser irradiation. Thus these results provide convincing evidence for the melting phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Analytical chemistry Division.

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W–7405–eng–26 with Union Carbide Corporation.

References

REFERENCES

1. White, C. W., Narayan, J. and Young, R. T., Science 204, 461 (1979).Google Scholar
2. Narayan, J., J. of Metals 32, 15 (1980).Google Scholar
3. Wang, J. C., Wood, R. F. and Pronko, P. P., Appl. Phys. Lett. 33, 455 (1978).Google Scholar
4. Baeri, P., Campisano, S. U., Foti, G. and Rimini, E., J. Appl. Phys. 50, 788 (1979).CrossRefGoogle Scholar
5. Khaibullin, I. B., Shtyrkov, B. I., Zaripov, M. M., Bayazitov, R. M. and Galjautdinov, M. F., Rad. Eff. 36, 225 (1978).Google Scholar
6. Van Vechten, J. A., Tsu, R., Saris, F. W. and Hoonhout, D., Phys. Lett. 74a, 417 (1979);Google Scholar
Van Vecten, J. A., Tsu, R. and Saris, F. W., Phys. Lett. 74a, 422 (1979).Google Scholar
7. Lo, H. W. and Compaan, A., Phys. Rev. Lett. 44, 1604 (1980).Google Scholar
8. Narayan, J. and Young, F. W. Jr., Appl. Phys. Lett. 35, 330 (1979).Google Scholar
9. Narayan, J., (unpublished).Google Scholar
10. Kodera, H., Jap. J. Appl. Phys. 2, 212 (1965).Google Scholar
11. Shashkov, Yu. M. and Gurevich, V. M., Russ. J. Phys. Chem. 42, 1082 (1968).Google Scholar
12. Narayan, J. and Wang, J. C., to be published.Google Scholar
13. Narayan, J., Appl. Phys. Lett. 34, 312 (1979).Google Scholar
14. Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
15. Narayan, J., J. Appl. Phys., in press.Google Scholar