Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-12T16:33:51.430Z Has data issue: false hasContentIssue false

Melt Processing of Bi-Ca-Sr-Cu-O Superconductors

Published online by Cambridge University Press:  28 February 2011

J.P. Cronin
Affiliation:
Arizona Materials Laboratories, The University of Arizona, Tucson, AZ 85712
A. Aruchamy
Affiliation:
Arizona Materials Laboratories, The University of Arizona, Tucson, AZ 85712
S. Rosenfelder
Affiliation:
Arizona Materials Laboratories, The University of Arizona, Tucson, AZ 85712
S.-J. Kim
Affiliation:
Arizona Materials Laboratories, The University of Arizona, Tucson, AZ 85712
D.R. Uhlmann
Affiliation:
Arizona Materials Laboratories, The University of Arizona, Tucson, AZ 85712
O.H. El-Bayoumi
Affiliation:
Solid State Sciences Directorate, Rome Air Development Center, Hanscom Air Force Base, Bedford, MA 01731
R.J. Andrews
Affiliation:
Solid State Sciences Directorate, Rome Air Development Center, Hanscom Air Force Base, Bedford, MA 01731
Get access

Abstract

Unidirectional crystallization of melt processed 2122 and 2223 composition in the Bi-Ca-Sr-Cu-O system has been carried out. Crystallization was controlled by heating the glass or cooling the melt using a moving furnace and a stationary sample. Fairly large oriented crystalline specimens of 2122 phases were obtained by cooling from the melt in a shallow gradient furnace. Glassy samples processed under steep gradients showed better crystallinity than those processed under shallow gradients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hinks, D.G., Soderholm, L., Capone II, D.W., Dabrowski, B., Mitchell, A.W., and Shi, D.; Appl. Phys. Lett. 53 (5), 423 (1988).Google Scholar
2 Tatsumisago, M., Angell, C.A., Akamatou, Y., Tsuboi, S., Tohge, N., and Minami, T.; Appl. Phys. Lett. 55(6), 600 (1989).Google Scholar
3 Das, B.N., Toth, L.E., Rayne, R.J., Bender, B.A., Osofsky, M.S., Soulen, R.J., Jr., , Lechter, W.L., Koon, N.C., and Wolf, S.A.; Journal of Superconductivity 2 (2) 253 (1989).Google Scholar
4 Gudgel, T.J., Zanotto, E.D., Smith, G.L., Dale, G., Subramoney, S., Uhlmann, E.V., Denesuk, M., Cronin, J.P., Biprodas Dutta, , Rajendran, G., Fabes, B., and Uhlmann, D.R. in Ceramic Superconductors II. edited by Yan, Man F. (Research Update, 1988, Published by: The American Ceramic Society, Inc.) pp. 419–427 and pp. 406–418.Google Scholar
5 Komatsu, T., Sato, R., Matusita, K. and Yamashita, T.; Appl. Phys. Lett. 54 (12) 1169 (1989).Google Scholar
6 Haixing Zheng, and Mackenzie, J.D.; Am. Phys. Soc. Phys. Rev. B. 38 (10) 7166 (1988).Google Scholar
7 Asthana, A., Han, P.D., Chang, L. and Payne, D.A.; Materials Letters 8 286 (1989).Google Scholar
8 Maeda, H., Tanaka, T., Fukutomi, M., and Asano, T.; Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar