Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:02:10.480Z Has data issue: false hasContentIssue false

Medium-range Order of Zr54Cu38Al8 Bulk Metallic Glass

Published online by Cambridge University Press:  22 January 2014

Pei Zhang
Affiliation:
Materials Science and Engineering, University of Wisconsin, Madison, Madison, WI 53711
M. F. Besser
Affiliation:
Ames Laboratory, Ames, IA 50011
M. J. Kramer
Affiliation:
Ames Laboratory, Ames, IA 50011
P. M. Voyles
Affiliation:
Materials Science and Engineering, University of Wisconsin, Madison, Madison, WI 53711
Get access

Abstract

We have previously reported, based on fluctuation electron microscopy (FEM) data, that Zr50Cu45Al5 bulk metallic glass (BMG) contains significant icosahedral and crystal-like medium-range order. Here, we report similar finding for Zr54Cu38Al8 BMG, which is a poorer glass former. Like Zr50Cu45Al5, Zr54Cu38Al8 contains icosahedral and crystal-like structures. In the as-cast state, the crystal-like peak in the FEM data is stronger than icosahedral-like peak. After annealing at 0.83Tg (573 K), the icosahedral-like peak increases, but, unlike Zr50Cu45Al5, the crystal-like peak does not decrease. This tendency toward stronger, more thermally stable crystal-like order may be associated with the poorer glass forming ability of Zr54Cu38Al8.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sheng, H.W., Luo, W. K., Alamgir, F. M., Bai, J.M., and Ma, E., Nature (London) 439, 419 (2006).CrossRefGoogle Scholar
Sheng, H.W., Cheng, Y. Q., Lee, P. L., Shastri, S. D., and Ma, E., Acta Mater. 56, 6264 (2008).CrossRefGoogle Scholar
Cheng, Y. Q., Ma, E., and Sheng, H.W., Phys. Rev. Lett. 102, 245501 (2009).CrossRefGoogle Scholar
Jakse, N. and Pasturel, A., Appl. Phys. Lett. 93, 113104(2008).CrossRefGoogle Scholar
Cheng, Y. Q., Ma, E., and Sheng, H.W., Appl. Phys. Lett. 93, 111913 (2008).CrossRefGoogle Scholar
Pedersen, U.R., Schrøder, T.B., Dyre, J.C., & Harrowell, P., Phys Rev Lett 104, 105701 (2010).CrossRefGoogle Scholar
Tanaka, H., Kawasaki, T., Shintani, H., & Watanabe, K., Nat Mater 9, 324331 (2010).CrossRefGoogle Scholar
Treacy, M. M. J., Gibson, J.M., Fan, L., Paterson, D. J., and McNulty, I., Rep. Prog. Phys. 68, 2899 (2005).CrossRefGoogle Scholar
Voyles, P.M., Gibson, J.M., Treacy, M.M.J., Journal of Electron Microscopy 49, 259266 (2000).CrossRefGoogle Scholar
Fan, L., Paterson, D., McNulty, I., Treacy, M.M.J., & Gibson, J.M., J Microscopy 225(1), 4148, (2007).CrossRefGoogle Scholar
Voyles, P.M., Fluctuation electron microscopy of medium range order in amorphous silicon. Dissertation. Urbana, IL: University of Illinois at Urbana-Champaign. (2001).Google Scholar
Stratton, W.G., Hamann, J., Perepezko, J.H., Mao, X., Khare, S.V., & Voyles, P.M., Appl Phys Lett 86, 141910 (2005).CrossRefGoogle Scholar
Hwang, J., Cao, J., & Voyles, P.M., Mater Res Soc Symp Proc 1048, Z05–04 (2008).Google Scholar
Voyles, P.M., & Muller, D.A., Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147159 (2002).CrossRefGoogle ScholarPubMed
Stratton, W.G., & Voyles, P.M., A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727736 (2008).CrossRefGoogle ScholarPubMed
Hwang, J., Kalay, Y., Kalay, I., Kramer, M. J., Stone, D. S., Voyles, P. M., Phys. Rev. Lett. 108, 195505 (2012).CrossRefGoogle Scholar
Wang, D., Tan, H., Li, Y., Acta Materialia 53, 29692979 (2005).CrossRefGoogle Scholar
Hwang, J., Nanometer scale atomic structure of zirconium based bulk metallic glass. Dissertation. University of Wisconsin-Madison (2011).Google Scholar
Schweiss, D.T., Hwang, Jinwoo, Voyles, P.M., Ultramicroscopy 124, 612 (2013).CrossRefGoogle Scholar