Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:32:46.113Z Has data issue: false hasContentIssue false

Mechanisms of Wetting in Reactive Metal/Oxide Systems

Published online by Cambridge University Press:  15 February 2011

N. Eustathopoulos
Affiliation:
LTPCM, URA 29, INPG, DU, ENSEEG, BP 75, 38402 Saint Martin d'Hères Cedex, France
B. Drevet
Affiliation:
LTPCM, URA 29, INPG, DU, ENSEEG, BP 75, 38402 Saint Martin d'Hères Cedex, France
Get access

Abstract

It is shown that for metal/oxide systems with weak or moderate reactivity, wetting depends mainly on parameters related with the detailed chemistry and structure of interfacial reaction products rather than on parameters related with the intensity of interfacial reactions. Consequently, wetting can be promoted by alloying a metal matrix M with a reactive solute B capable of modifying in a favourable sense the metal/oxide interface. This can be achieved via two mechanisms depending on the value of the Wagner's interaction parameter εBo. When εBo<0 (moderate interactions between solute B and dissolved oxygen), the solute B can modify the liquid-side of the interface by adsorption, an effect that can be strongly enhanced by oxygen coming from dissolution of the oxide substrate. When εBo<<0 (strong O-B interactions in M), the solute B can lead to the formation, at the solid-side of the interface, of a new phase. When this new phase features metallic bonding wetting can be strongly improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Naidich, Ju. V., Prog. Surface Membrane Sci. 14, 353 (1981).CrossRefGoogle Scholar
[2] Tasker, P. W., Stoneham, A. M., J. Chimie Physique (F) 84(2), 149 (1987).CrossRefGoogle Scholar
[3] Johnson, K. H., Pepper, S. V., J. Appl. Phys. 53, 6634 (1982).CrossRefGoogle Scholar
[4] Hicter, P., Chatain, D., Pasturel, A., Eustathopoulos, N., J. Chimie Physique 85(10), 941 (1988).CrossRefGoogle Scholar
[5] Eustathopoulos, N., Chatain, D., Coudurier, L., Mater. Sci. Engineering A 135, 83 (1991).CrossRefGoogle Scholar
[6] Ownby, P. D., Liu, J., J. Adhesion Sci. Technol. 2(4), 255 (1988).CrossRefGoogle Scholar
[7] Li, J. G., Coudurier, L., Eustathopoulos, N., J. Mater. Sci. 24, 1109 (1989).CrossRefGoogle Scholar
[8] Nicholas, M. G., Joining Ceramic. Glass and Metal, edited by Kraft, W. (DGM, Rutesheim, 1989), p. 3.Google Scholar
[9] Eustathopoulos, N., Drevet, B., J. Physique III (F) (to be published).Google Scholar
[10] Chatain, D., Rivollet, I., Eustathopoulos, N., J. Chimie Physique (F) 83(9), 561 (1986).CrossRefGoogle Scholar
[11] Sangiorgi, R., Muolo, M. L., Chatain, D., Eustathopoulos, N., J. Amer. Ceram. Soc. 71(9), 742 (1988).CrossRefGoogle Scholar
[12] Laurent, V., PhD thesis, Grenoble, France,. 1988.Google Scholar
[13] Aksay, L. A., Hoge, C. E., Pask, J. A., J. of Phys. Chem. 78, 1178 (1974).CrossRefGoogle Scholar
[14] Chidambaram, P. R., Edwards, G. R., Olson, D. L., Metall. Trans. B 23B, 215 (1992).Google Scholar
[15] Kritsalis, P., Coudurier, L., Eustathopoulos, N., J. Mater. Sci. 26, 3400 (1991).CrossRefGoogle Scholar
[16] Kritsalis, P., Coudurier, L., Parayre, C., Eustathopoulos, N., J. Less-Common Metals 175, 13 (1991).CrossRefGoogle Scholar
[17] Espié, L., DEA report, INP Grenoble, France, 1992. L. Espié, B. Drevet, N. Eustathopoulos, submitted to Metall. Trans.Google Scholar
[18] Naidich, Ju. V., Chuvashov, Ju. N., J. Mater. Sci. 18, 2071 (1983).CrossRefGoogle Scholar
[19] Naidich, Ju. V., Zhuravljov, V. S., Frumina, N. I., J. Mater. Sci. 25, 1895 (1990).CrossRefGoogle Scholar
[20] Kritsalis, P., PhD thesis, Technical University of Athens, Greece, 1990.Google Scholar
[21] Eustathopoulos, N., Coudurier, L., J. Adhesion Sci. Technol. 6, 1011 (1992).CrossRefGoogle Scholar
[22] Kritsalis, P., Li, J. G., Coudurier, L., Eustathopoulos, N., J. Mater. Sci. Letters 9, 1332 (1990).CrossRefGoogle Scholar
[23] Mori, N., Sorano, H., Kitahara, A., Ogi, K., Matsuda, K., J. Japan Inst. Metals 47, 1132 (1983).CrossRefGoogle Scholar
[24] Chang, Y. Austin, Fitzner, K., Min-Xian Zhang, Progress in Materials Science 32, 97 (1988).CrossRefGoogle Scholar
[25] Heinz, M., Koch, K., Janke, D., Steel Res. 60, 246 (1989).CrossRefGoogle Scholar
[26] Naidich, Yu. V., Chubashov, Yu. N., lshchuk, N. F., Krasovskii, V. P., Poroshkovaya Metallurgiya 246(6), 67 (1983).Google Scholar
[27] Laurent, V., Chatain, D., Eustathopoulos, N., Mater. Sci. Engineering A 135, 89 (1991).CrossRefGoogle Scholar
[28] Kritsalis, P., Merlin, V., Coudurier, L., Eustathopoulos, N., Acta Metall. Mater. 40(6), 1167 (1992).CrossRefGoogle Scholar
[29] Merlin, V., Kritsalis, P., Coudurier, L., Eustathopoulos, N., Mat. Res. Soc. Symp. Proc. 238, 511 (1992).Google Scholar
[30] Naidich, Yu. V., Zhuravlev, V. S., Chuprina, V. G., Sov. Powd. Metall. and Met. Ceramics 13(3), 236 (1974).CrossRefGoogle Scholar