Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:16:19.009Z Has data issue: false hasContentIssue false

Mechanisms of Single-Wall Carbon Nanotube Growth by the Laser Vaporization Technique: In Situ Imaging and Spectroscopy

Published online by Cambridge University Press:  10 February 2011

D. B. Geohegan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
A. A. Puretzky
Affiliation:
Dept. of Materials Science and Engineering, University of Tennessee
X. Fan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
M. A. Guillorn
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
M. L. Simpson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
V. I. Merkulov
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, [email protected]
Get access

Abstract

Single-wall carbon nanotubes are formed by Nd:YAG laser vaporization of a graphite/(1 at. % Ni, 1 at. % Co) target into flowing argon (500 Torr) within a quartz tube furnace (1000 °C). Here, this process is investigated for the first time with time-resolved laser-induced luminescence imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters. These measurements under actual synthesis conditions show that the plume of vaporized material is segregated and confined within a vortex ring which maintains a ˜1 cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 μs) and cobalt (2 ms). This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs during several seconds of time from a feedstock of mixed nanoparticles in the gas-suspended plume. Using these in situ diagnostics to adjust the time spent by the plume within the high-temperature zone, single-walled nanotubes of controlled length were grown at an estimated rate of 0.2 μm/s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fisher, J. E., Smalley, R. E., Science 273, 483 (1996).Google Scholar
2. Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S., Chem. Phys. Lett. 299, 91 (1999).Google Scholar
3. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fisher, J. E., Rao, A. M., Eklund, P. C., Smalley, R. E., Appl. Phys. A 67, 29 (1998).Google Scholar
4. JT, Hu, TW, Odom, CM, Lieber, Accounts of Chemical Research 32, 435445 (1999).Google Scholar
5. Dillon, A. C., Parilla, P. A., Jones, K. M., Riker, G., Heben, M. J., Mater. Res. Symp. Proc. (to be published).Google Scholar
6. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., and Iijima, S., J. Phys. Chem. B 103, 4346 (1999).Google Scholar
7. Yakobson, B.I. and Smalley, R.E., American Scientist 85, 324 (1997).Google Scholar
8. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).Google Scholar
9. Bethune, D.S., Kiang, C.H., Vries, M.S. de, Gorman, G., Savoy, R., Vazquez, J., Beyers, R., Nature 363, 605 (1993).Google Scholar
10. Avouris, Ph., Hertel, T., Martel, R., Schmidt, T., Shea, H.R., and Walkup, R.E., Appl. Surf. Sci. 141, 201 (1999).Google Scholar
11. Baughman, R.H., Cui, C., Zakhidov, A.A., lqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., Rossi, D. De, Rinzler, A. G., Jaschinski, O., Roth, S., and Kertesz, M., Science 284, 1340 (1999).Google Scholar
12. Poncharal, P., Wang, Z. L., Ugarte, D., and Heer, W. A. de, Science 283, 1513 (1999).Google Scholar
13. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., and Lieber, C.M., Nature 394, 52 (1998).Google Scholar
14. Schmid, H. and Fink, H.–W., Appl. Phys. Lett. 70, 2679 (1997).Google Scholar
15. Li, J., Papadopoulos, C., Xu, J. M., and Moskovits, M., Appl. Phys. Lett. 75, 367 (1999).Google Scholar
16. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez–Macias, F., Shon, Y.–S., Lee, T. R., Colbert, D. T., and Smalley, R. E., Science 280, 1253 (1998).Google Scholar
17. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Lku, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E., Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
18. Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., Smalley, R. E., Chem. Phys. Lett. 236, 419 (1995).Google Scholar
19. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R., Fisher, J.E., Nature 388, 756 (1997).Google Scholar
20. Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X., Dresselhaus, M. S., Appl. Phys. Lett. 72, 3282 (1998).Google Scholar
21. Satiskumar, B. C., Govindaraj, A., Sen, R., Rao, C.N.R., Chem. Phys. Lett. 293, 47 (1998).Google Scholar
22. Arepalli, S., Scott, C.D., Chem. Phys. Lett. 302, 139 (1999).Google Scholar
23. Geohegan, D.B., Puretzky, A.A., Duscher, G. and Pennycook, S.J., Appl. Phys. Lett. 72, 2987 (1998).Google Scholar
24. Geohegan, D.B., Puretzky, A.A., Duscher, G. and Pennycook, S.J., Appl. Phys. Lett. 73, 438 (1998).Google Scholar
25. Geohegan, D.B., Puretzky, A.A., Rader, D.J., Appl. Phys. Lett. 74, 3788 (1999).Google Scholar
26. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., Appl. Phys. Lett. 76, 182 (2000).Google Scholar
27. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., special issue of Appl. Phys.A.to be published Jan./Feb. 2000.Google Scholar
28. Geohegan, David B., Puretzky, A. A., Hettich, R. L., Zheng, X.-Y., Haufler, R. E., and Compton, R. N., in Advanced Materials '93, IV/ Laser and Ion Beam Modification of Materials, edited by Yamada, I., et al., Trans. Mat. Res. Soc. Jpn., 17, 349 (1994).Google Scholar
29. Images also available online at www.ornl.gov/˜odg.Google Scholar
30. Bulgakov, A. V. and Bulgakova, N. M., J. Phys. D: Appl. Phys. 31, 693 (1998).Google Scholar
31. Garrelie, F., Champeaux, C., Catherinot, A., Appl. Phys. A 69, 45 (1999).Google Scholar
32. Geohegan, D. B., Puretzky, A. A., Appl. Phys. Lett. 67, 197 (1995).Google Scholar
33. Krajnovich, D., J. Chem. Phys 102, 726 (1995).Google Scholar
34. Rohlfing, E. A., J. Chem. Phys 91, 4531 (1989).Google Scholar
35. Geohegan, D. B., Puretzky, A. A., Mater. Res. Symp. Proc. 397, 55 (1996).Google Scholar
36. Rohlfing, E. A., J. Chem. Phys. 89, 6103 (1988).Google Scholar
37. Geohegan, D. B., Appl. Phys. Lett. 62, 1463 (1993).Google Scholar
38. Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., Ichihashi, T., and Iijima, S., J.Phys. Chem. B 103, 6224 (1999).Google Scholar