Article contents
The mechanisms of plastic deformation of rapidly solidified Al3Ti and Al67Ni8Ti25 intermetallic compounds.
Published online by Cambridge University Press: 26 February 2011
Abstract
The dislocation structures in rapidly solidified Al3Ti with the DO22 structure and the ternary Al-25Ti-8Ni (at.%) alloy with the L12 structure deformed in compression in the temperature range of 25 to 800°C have been studied by transmission electron microscopy. The room temperature deformation microstructure of the Al3Ti compound is characterized by the presence of stacking faults/order twins on {111} planes bounded by partial dislocations with Burgers vector b=1/6<112], as reported by others. At intermediate temperatures, besides the stacking faults, slip is also observed as bands on the {001] plane delineated by dislocations with b=1/2<110] which bound APB's. At 600°C, the reported increase in ductility is associated here with additional slip on the {001)<110], {001)[100] and {001)[010] systems. Dislocations with b=<110] exist as pairs of partial dislocations with b=1/2<110] connected by APB's. The mean separation between the partials was measured to be 30 nm, corresponding to an APB energy of ≍32 mJ.m-2 on the (001) plane. Observations also indicate that the APB energy is anisotropic, i.e., is considerably higher on the {111} planes compared to the {001) plane. The deformation microstructure of the Al-25Ti-8Ni L12 alloy is characterized by slip of dislocations with b=<110> gliding on {111} planes, a major fraction of which exist as dipoles. Following deformation at 300°C, there is essentially no evidence of dissociation of these dislocations, although some dissociated dislocations on (001) having b=l/2<110> are also observed. With an increase in temperature, there is a considerable increase in dislocation activity and strong evidence for 1/2<110> dissociated dislocations is present.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989
References
REFERENCES
- 5
- Cited by