Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T03:48:11.512Z Has data issue: false hasContentIssue false

Mechanisms of Inelastic Deformation and Stress Relaxation in Thin Metallizations Bonded to Hard Substrates

Published online by Cambridge University Press:  26 February 2011

M.A. Korhonen
Affiliation:
Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY 14853
P. Bergesen
Affiliation:
Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY 14853
Che-Yu Li
Affiliation:
Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY 14853
Get access

Abstract

The yield strength of metallic thin films bonded to hard substrates can be significantly higher than is customary for bulk samples of the same metal. This is related to the constrained nature of the deformation. The constrained deformation, as well as the commonly observed crystallographic texture of thin films, places restrictive conditions on the mechanisms of deformation that produce stress relaxation. In narrow aluminum based metallizations used as interconnects in large scale integrated circuits thermal stress induced voiding provides an effective means for stress relaxation. For these interconnects, the stress state is tensile after excursions to higher temperatures; the stresses relax mainly by dislocation glide and grain boundary sliding during the cooldown, while the longer term relaxation is governed by stress-induced voiding and dislocation creep.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dragone, T.L. and Nix, W.D., Acts Metall. 38, 1941 (1990)Google Scholar
2. Ashby, M.F., Blunt, F.J., and Bannister, M., Acta Metall. 37, 1847 (1989)Google Scholar
3. Dalgleish, D.J., Trumble, K.P. and Evans, A.C., Acta Metall. 37, 1923 (1990)Google Scholar
4. Tvergaard, V., Acta Metall. 39, 419 (1991)Google Scholar
5. Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T.-W. and Li, Che-Yu, J. Mater. Res. 3, 141 (1988)Google Scholar
6. Korhonen, M.A. and Paszkiet, C.A., Scripta Metall. 23, 1449 (1989)Google Scholar
7. Flinn, P.A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990)Google Scholar
8. Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., Proc. 1990 IEEE/IRPS, p. 221 Google Scholar
9. Korhonen, M.A., Suominen, L.S., and Li, Che-Yu, Proc. Int. Conf., Nondestructive Characterization of Materials IV, Annapolis, June 1990 Google Scholar
10. Korhonen, M.A., LaFontaine, W.R., Black, R.D., Paszkiet, C.A. and Li, Che-Yu, in Thin Films: Stresses and Mechanical Properties II (MRS Proc. 188, Pittsburgh, PA, 1990), p. 159 Google Scholar
11. Flinn, P.A., Gardner, D.S. and Nix, W.D., IEEE Trans. ED–34, 689 (1987) p. 89 Google Scholar
12. Mura, T., Fundamentals of Deformation and Fracture, Bilby, B.A., Miller, K.J. and Willis, J.R., eds., (Cambridge University Press, Cambridge, 1985), p. 75 Google Scholar
13. Nix, W.D., Met. Trans. 20A, 2217 (1989)Google Scholar
14. Hsueh, C.-H., Acta Metall. 38, 403 (1989)Google Scholar
15. Agrawal, D.C. and Raj, R., Acta Metall. 37, 1265 (1989)Google Scholar
16. Ashby, M.F., Phil. Mag. 21, 399 (1970)Google Scholar
17. Ronay, M., Phil. Mag. A40, 145 (1979)Google Scholar
18. Mura, T., Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Hague, 1982)Google Scholar
19. Eshelby, J.D., Proc. Roy. Soc. A 241, 376 (1957); also Proc. Roy. Soc. A 251, 561 (1959)Google Scholar
20. Korhonen, M.A., Black, R.D. and Li, Che-Yu, J. Appl. Phys. 69, 1748 (1991)Google Scholar
21. Korhonen, M.A., Paszkiet, C. A., Black, R.D., and Li, Che-Yu, Scripta Metall. 24, 2297 (1990)Google Scholar
22. , Steinwall and Johnson, H.H., in Thin Films: Stresses and Mechanical Properties II (MRS Proc. 188, Pittsburgh, PA, 1990), p. 177 Google Scholar
23. Paszkiet, C.A., Korhonen, M.A., and Li, Che-Yu, The effect of a passivation overlayer on the mechanisms of stress relaxation in continuous films and narrow lines of aluminum, MRS Spring Meeting, Anaheim, Apr. 29 - 3 May, 1991 Google Scholar
24. Paszkiet, C.A., Korhonen, M.A., and Li, Che-Yu, in Thin Films: Stresses and Mechanical Properties (MRS Proc. 188, Pittsburgh, PA, 1990), p. 153 Google Scholar
25. Korhonen, M.A., Paszkiet, C.A., and Li, Che-Yu, J. Appl. Phys. 69, 8083 (1991)Google Scholar
26. Jackson, M.S. and Li, Che-Yu, Acta Metall. 30, 1993 (1982)Google Scholar
27. Lee, D. and Hart, E.W., Met. Trans. 2, 1245 (1971)Google Scholar
28. Nabarro, F.R.N., Acta Metall. 37, 1521 (1989)Google Scholar
29. Li, Che-Yu, in Metallurgical Treatises, Tien, J.K. and Elliott, G.F., eds., (TMS-AIME, 1981) p. 469 Google Scholar
30. Korhonen, M.A., Hannula, S.-P., and Li, Che-Yu, in Unified constitutive equations for creep and plasticity, Miller, A.K., ed., (Elsevier Applied Science, Amsterdam, 1987)Google Scholar
31. Hirth, J.P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982)Google Scholar
32. Niwa, H., Yagi, H., Tsuchikawa, H., and Kato, M., J. Appl. Phys. 68, 328 (1990)Google Scholar
33. Korhonen, M.A., LaFontaine, W.R., Borgesen, P., and Li, Che-Yu, submitted for publicationGoogle Scholar
34. Bergesen, P., Lee, J.K., Korhonen, M.A. and Li, Che-Yu, “The effect of line geometry on void growth in thin narrow aluminum lines”, MRS Spring Meeting, Anaheim, Apr. 29 - May 3, 1991 Google Scholar
35. Korhonen, M.A., Bergesen, P., Paszkiet, C.A., Lee, J.K., and Li, Che-Yu, “Void Srowth as a function of residual stress level in thin, narrow aluminum ines”, MRS Spring Meeting, Anaheim, Apr. 29 - May 3, 1991 Google Scholar
36. Riedel, H., Fracture at High Temperatures (Springer-Verlag, Berlin, Heidelberg, 1987)Google Scholar
37. Hull, D. and Rimmer, D.E., Phil. Mag. 4, 673, (1959)Google Scholar
38. Dyson, B.F., Can. Met. Quart. 18, 31 (1979)Google Scholar