Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T10:59:02.697Z Has data issue: false hasContentIssue false

Mechanisms of Excimer Laser induced Positive Ion Emission From Ionic Crystals

Published online by Cambridge University Press:  21 February 2011

J. T. Dickinson
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814
J-J. Shin
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814
S. C. Langford
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164-2814
Get access

Abstract

The energy distributions of positive ions produced by exposing single-crystal MgO to pulsed 248 nm excimer laser light at fluences of 200-1200 mJ/cm2 were determined by combined quadrupole mass spectrometry and time-of-flight techniques. the dominant ionic species is Mg+, although small amounts of Mg2+, MgO+, and Mg2O+ are also observed. IN particular, the

Mg+ and Mg2+ energy distributions each show two broad peaks, with the energies of the Mg2+ peaks at significantly higher energies. Ion trajectory simulations (accounting for Coulomb forces only and assuming no surface relaxation) suggest that Mg2+ adsorbed at sites directly atop surface F-centers (oxygen vacancies with two trapped electrons) would be ejected upon photo-ionization of the F-center. the experimentally observed Mg2+ kinetic energies agree well with the energies predicted by the simulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matthias, E., Nielsen, H. B., Reif, J., Rosen, A., and Westin, E., J. Vac. Sci. Technol. B5, 1415 (1987).Google Scholar
2 Matthias, E. and Green, T. A., in Desorption induced by Electronic Transitions, DIET IV, edited by Betz, G. and Varga, P. (Springer, Berlin, 1990), pp. 112127.Google Scholar
3 Chase, L. L., Hamza, A. V., and Lee, H. W. H., in Laser ablation: Mechanisms and applications, edited by Miller, J. C. and Haglund, R. F. Jr., (Springer, Berlin, 1991), pp. 193202.Google Scholar
4 Webb, R. L., Langford, S. C., Jensen, L. C., and Dickinson, J. T., Mat. Res. Soc. Symp. Proc. 226, 21 (1992).Google Scholar
5 Webb, R. L., Jensen, L. C., Langford, S. C., and Dickinson, J. T., J. appl. Phys. 74, 2323 (1993).Google Scholar
6 Dickinson, J. T., Jensen, L. C., Webb, R. L., Dawes, M. L., and Langford, S. C., Proc. Mater. Res. Soc. 285, 131 (1993).Google Scholar
7 Dickinson, J. T., Jensen, L. C., Webb, R. L., Dawes, M. L., and Langford, S. C., J. appl. Phys. 24, 3758 (1993).Google Scholar
8 Knotek, M. L. and Feibelman, Peter J., Phys. Rev. Lett. 40, 964 (1978).Google Scholar
9 Kurtz, Richard L., Roger, Stockbauer, Ralf, Nyholm, Anders Flodström, S., and Friedmar, Senf, Phys. Rev. B35, 7794 (1987).Google Scholar
10 Stanley, R. W., Am. J. Phys. 52, 499 (1984).Google Scholar
11 Andrew, Gibson, Roger, Haydock, and LaFemina, J. P., Appl. Surf. Sci. 72, 285 (1993).Google Scholar
12 Dickinson, J. T., Jensen, L. C., Webb, R. L. and Langford, S. C., in Laser ablation: Mechanism and applications-II, aIP Conf. Proc. 288, 1325 (1993).Google Scholar
13 Magill, J., Bloem, J., and Ohse, R. W., J. Chem. Phys. 76, 6227 (1982).Google Scholar
14 Dickinson, J. T., Langford, S. C., Shin, J. J., and Doering, D. L., Phys. Rev. Lett. 73, 2630 (1994).Google Scholar