Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:22:26.406Z Has data issue: false hasContentIssue false

Mechanisms for Conduction Pathway Formation in Polymer Encapsulants

Published online by Cambridge University Press:  21 February 2011

J. E. Anderson
Affiliation:
Research Staff, Ford Motor Company, Dearborn MI 48121
D. A. Hoffmann
Affiliation:
Dept. of Chemical Engineering, Stanford University, Stanford, CA 94305
C. W. Frank
Affiliation:
Dept. of Chemical Engineering, Stanford University, Stanford, CA 94305
L. J. Bousse
Affiliation:
Molecular Devices, Palo Alto CA 94304
Get access

Abstract

This article concerns physicochemical mechanisms leading to formation of local heterogeneous structures in bulk polymers. Previous experimental work suggests that such heterogeneities are related to ionic conduction and electrochemical attack on encapsulated microelectronics. Six mechanisms are discussed: (a) Macrosyneresis; (b) Osmotic swelling; (c) Liquid-liquid phase separation; (d) Microsyneresis; (e) Polymer fracture during solvent sorption/desorption; (f) Polymer-substrate interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoffmann, D.A., Anderson, J.E., Bousse, L.J. and Frank, C.W., “Heterogenous Conduction Processes in Integrated Circuit Encapsulation” in Polymeric Materials for Electronic Packaging, American Chemical Society Advances in Chemistry Series, Lupinski, J.H. and Moore, R.S., Eds. (in press, 1989).Google Scholar
2. See, for example, Glasstone, S. and Lewis, D., Elements of Physical Chemistry (Van Nostrand, Princeton, 1960) pg. 498.Google Scholar
3. See, for example, Glasstone, S. and Lewis, D., Elements of Physical Chemistry (Van Nostrand, Princeton, 1960) pg. 417.Google Scholar
4. Anderson, J.E., Markovac, V. and Troyk, P.R., IEEE Trans. Comp. Hybr. Manuf. Tech. CHMT–11, 152 (1988).Google Scholar
5. Bruggeman, D.A.G., Ann. Physik (Leipz.) 24, 363, 665 (1935); 25, 645 (1936); 299, 160 (1937).Google Scholar
6. Landauer, R. in Electrical Transport and Optical Properties of Inhomogeneous Media, Garland, J.C. and Tanner, D.B., Eds., (Amer. Inst. Phys., New York, 1978) p.2 ff.Google Scholar
7. Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).Google Scholar
8. Davidson, A. and Tinkham, M., Phys. Rev. B13, 3261 (1976).Google Scholar
9. Curtis, H.L., U.S. Bureau of Standards Sci. Paper No. 234, (1915).Google Scholar
10. Evershed, S., J.I.E.E. 52, 63 (1914).Google Scholar
11. Cohn, E.M. and Guest, P.G., U.S. Bureau of Mines Bulletin I.C. 7286, (1944).Google Scholar
12. Murphy, E.J. and Walker, A.C., J. Phys. Chem. 32, 1761 (1928).Google Scholar
13. Wong, P.-z., Physics Today 41, No. 12, 24 (1985).Google Scholar
14. Roberts, J.N. and Schwartz, L.M., Phys. Rev. B31, 5990 (1985).Google Scholar
15. Dusek, K., Polymer Letters 3, 209 (1966); K. Dusek and D. Patterson, J. Poly. Sci., A-2, 1209 (1968).Google Scholar
16. Seidl, J., Malinsky, J., Dusek, K. and Heitz, W., Adv. Polymer Sci. 5, 113 (1967).Google Scholar
17. Tanaka, T., Phys.Rev. Lett. 40, 820 (1978); Scientific American 244 110 (1981).Google Scholar
18. Fedors, R.F., J. Poly. Sci. 12, 81 (1974); Polymer 21, 207 (1980).Google Scholar
19. Meer-Lerk, L.A. van der and Heertjes, P.M., J. Oil Chem. Assoc. 58, 79 (1975).Google Scholar
20. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions (Academic Press, New York, 1959), pp. 2430.Google Scholar
21. Andrews, D.H. and Johnston, J., J. Am. Chem. Soc. 46, 640 (1924).Google Scholar
22. Lowry, H.H. and Kohman, G.T., J. Phys. Chem. 31, 23 (1927).Google Scholar
23. Daynes, H.A., Trans. Faraday Soc. 33 531 (1937); Rubber Chem. Tech. 12, 535 (1939).Google Scholar
24. Briggs, G.J., Edwards, D.C. and Story, E.B., Rubber Chem. Tech. 36, 621 (1963).Google Scholar
25. Barrie, J.A. and Platt, B., Polymer 4, 303 (1963).Google Scholar
26. Robeson, L.M. and Crisafulli, S.T., J. Appl. Polymer Sci. 28, 2925 (1983).Google Scholar
27. Narkis, M. and Bell, J.P., J. Appl. Polymer Sci. 27, 2809 (1982).Google Scholar
28. Bueche, F., J. Colloid Interface Sci. 33, 61 (1976).Google Scholar
29. Stein, R.S., Polymer Letters 7, 657 (1969).Google Scholar
30. Alfrey, T., Gurnee, E.F. and Lloyd, W.G., J. Polymer Sci., Part C, 12, 249 (1966).Google Scholar
31. Fowler, R.H. and Guggenheim, E.A., Statistical Thermodynamics (Cambridge Univ. Press, 1960) pp. 416 ff.Google Scholar
32. Schmidt, I. and Binder, K., J. Physique 46, 1631 (1985).Google Scholar
33. Treloar, L.R.G., Proc. Roy. Soc. A200, 176 (1950); Polymer 12, 142 (1976).Google Scholar