Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:56:27.187Z Has data issue: false hasContentIssue false

A Mechanism of the Positive Temperature Dependence of Yield Stress in Tial

Published online by Cambridge University Press:  26 February 2011

T. Kawabata
Affiliation:
Sumitomo Light Metal Industries, Ltd., Technical Research Laboratories, Chitose, Minato-Ku, Nagoya, 455, Japan.
T. Kanai
Affiliation:
Hitachi, Ltd., Hitachi Research Laboratory, Hitachi, Japan.
O. Izumi
Affiliation:
Tohoku University, Institute for Material Research, Sendal, 980, Japan
Get access

Abstract

The positive temperature dependence of yield stress (PTYS) has been observed (Kawabata et al., Acta Metall., 33, 1355 (1985)) in TiAl single crystals in all orientations operating ordinary dislocations with the Burgers vector 1/2<110] and superdislocations with the Burgers vectors <101] and 1/2<112]. A mechanism for the PTYS is proposed, which is a cross-slip and pinning mechanism of Shockley partials with the Burgers vector 1/6<112] or/and 1/6<121]. The results of strain rate dependence of yield stress, K value dependence of critical resolved shear stress (CRSS) and transmission electron microscopy support the theory. Here, K value is the Schmid factor ratio of a Shockley partial on {101) or {110) plane and a perfect ordinary dislocation or a perfect superdislocation on {111) plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawabata, T., Kanai, T. and Izumi, O., Acta Metall., 33, 1355 (1985).CrossRefGoogle Scholar
2. Hahn, Y. D. and Whang, S. H., MRS Symp. Proc., Vol. 133, 385–390, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C., (1989).CrossRefGoogle Scholar
3. Whang, S. H. and Hahn, Y. D., Scripta Metall., 24, 485 (1990);Google Scholar
3a Hahn, Y. D. and Whang, S. H., Metall. Trans., in print.Google Scholar
4. Kear, B. H. and Wilsdorf, H. G. F., Trans. AIME, 224, 382 (1962).Google Scholar
5. Takeuchi, S. and Kuramoto, E., Acta Metall., 21, 415 (1973).Google Scholar
6. Paidar, V., Pope, D. P. and Vitek, V., Acta Metsall., 32, 435 (1984).CrossRefGoogle Scholar
7. Greenberg, B. A., Phys. stat. sol., 42, 459 (1970);CrossRefGoogle Scholar
7a Phys. stat. sol., (b), 55, 59 (1973).Google Scholar
8. Greenberg, B. A. and Gornostirev, Yu. N., 16, 15 (1982).Google Scholar
9. Hug, G., Loiseau, A. and Veyssiere, P., Phil. Mag., A57, 499 (1988).Google Scholar
10. Kawabata, T., Kanai, T. and Izumi, O., Phil. Mag., in print.Google Scholar
11. Kawabata, T., Abumiya, T., Kanai, T. and Izumi, O., Acta Metall. Mater., 38 1381 (1990)Google Scholar
12. Marcinkowski, M. J., Brown, N. and Fisher, R. M., Acta Metall., 9, 129 (1961).Google Scholar
13. Hug, G., Loiseau, A. and Lasalmonie, A., Phil. Ma, A54, 47 (1986).Google Scholar
14. Yoo, H.M., Acta Metal., 35, 1559 (1987).CrossRefGoogle Scholar