Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T04:24:19.875Z Has data issue: false hasContentIssue false

Mechanism of Stress-Enhanced Solid-Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

T. K. Chaki*
Affiliation:
State University of New York, Department of Mechanical Engineering, and Center for Electronic & Electro-optic Materials, Buffalo, NY 14260
Get access

Abstract

Enhancement of solid-phase epitaxial growth (SPEG) due to hydrostatic pressures and bending stresses is explained by stress-enhanced mobility of point defects in the amorphous solid. The crystallization is by the adjustment of atomic positions in the vicinity of the crystallization/amorphous (c-a) interface due to self-diffusion in the amorphous phase, assisted by a free energy decrease equal to the difference in free energies between the amorphous and crystalline phases. Due to a mismatch in the bulk moduli between the amorphous and crystalline phases, the application of a hydrostatic pressure can develop tensile stresses in the amorphous layer near the c-a interface. Non-hydrostatic stresses in the amorphous layer enhance the mobility of point defects in the amorphous layer and, therefore, an enhancement of the SPEG rate. In the cases of both hydrostatic pressure and bending, the enhancement occurs in the tensile side, indicating that vacancy-like mechanism is predominant in SPEG.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Csepregi, L., Mayer, J. W., and Sigmon, T. W., Phys. Lett. A, 54, 157(1975).Google Scholar
[2] Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys., 49, 3906 (1978).Google Scholar
[3] Csepregi, L., Kullen, R. P., Mayer, J. W., and Sigmon, T. W., Solid State Commun., 21, 1019 (1977).Google Scholar
[4] Williams, J. S. and Austin, M. W., Appl. Phys. Lett., 36, 994 (1980).Google Scholar
[5] Licoppe, C., Nissim, Y. I., and Meriadec, C., J. Appl. Phys., 58, 3094(1985).Google Scholar
[6] Nakata, J. and Kajiyama, K., Appl. Pys. Lett., 40, 686 (1982).Google Scholar
[7] Linnros, J., Svensson, B., and Holmén, G., Phys. Rev. B, 30, 3629 (1984).Google Scholar
[8] Williams, J. S., Euiman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett., 55, 1482 (1985).Google Scholar
[9] Holmén, G., Peterstrom, S., and Buré, A., and Bogh, E., Radiat. Effects, 24, 45 (1975).Google Scholar
[10] Johnson, S. T., Williams, J. S., Nygren, E., and Elliman, R. G., J. Appl. Phys., 64, 6567 (1988).Google Scholar
[11] Lu, G. Q., Nygren, E., Aziz, M. J., Turnbull, D., and White, C. W., Appl. Phys. Lett., 54, 2583 (1989); 56, 137 (1990).Google Scholar
[12] Aziz, M. J., Sabin, P. C., and Lu, G. Q., Phys. Rev. B, 44, 9812 (1991).Google Scholar
[13] Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J., and Poate, J. M. (American Institute of Physics, New York, 1979), p. 73.Google Scholar
[14] Narayan, J., J. Appl. Phys., 53, 8607 (1982).Google Scholar
[15] Chaki, T. K., Phil. Mag. Lett., 59, 223 (1989); Mater. Res. Soc. Symp. Proc, 157, 173 (1990).Google Scholar
[16] Werner, M., Mehrer, H., and Hochheimer, H. D., Phys. Rev. B, 32, 3930(1985).Google Scholar
[17] Chaki, T. K., Phil. Mag. Lett., 63, 303 (1991).Google Scholar
[18] Gupta, D., Tu, K. N., and Asai, K. W., Phys. Rev. Lett., 35, 796 (1975).Google Scholar
[19] Ahmadzaheh, M. and Cantor, B., J. Non-Crystalline Solids, 43, 189(1981).Google Scholar
[20] Tu, K. N. and Chou, T. C., Phys. Rev. Lett., 61, 1863 (1988).Google Scholar
[21] Hahn, H. and Averback, R. S., Phys. Rev. B, 37, 6533 (1988).Google Scholar
[22] Chaki, T. K. and Li, J. C. M., Phil. Mag. B, 51, 557 (1985).Google Scholar
[23] Laakkonen, J. and Nieminen, R. M., J. Phys. C 21, 3663 (1988).Google Scholar
[24] Li, J. C. M., Treatise on Materials Science and Technology (Academic Press, San Diego), 20, 325 (1981).Google Scholar
[25] Maddin, R. and Masumoto, T., Mater. Sci. Engng., 9, 153 (1972).Google Scholar
[26] Witvrouw, A. and Spaepen, F., Mater. Res. Soc. Symp. Proc. (Materials Research Society, Pittsburgh), 205, 21 (1992).Google Scholar
[27] Nabarro, F. R. N., Report on Conference on Strength of Solids (Physical Society, London, 1948), p. 75.Google Scholar
[28] Herring, C., J. Appl. Phys., 21, 437 (1950).Google Scholar
[29] Tan, S. I., Berry, B. S., and Crowder, B. L., Appl. Phys. Lett., 20, 88(1972).Google Scholar
[30] Bhadra, R., Pearson, J., Okamoto, P., Rehn, L., and Grimsditch, M., Phys. Rev. B, 38 12656 (1988).CrossRefGoogle Scholar
[31] Birch, F., in Handbook of Physical Constants, Geological Society of America Memoir 97, 107 (1966).Google Scholar
[32] Volkert, C. A. and Jacobson, D. C., 1990 Fall Meeting Abstract (Materials Research Society, Pittsburgh), p. 173.Google Scholar