Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:04:57.663Z Has data issue: false hasContentIssue false

Mechanism of Field Emission in Diamond and Diamondlike Carbon

Published online by Cambridge University Press:  10 February 2011

J Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1 PZ, UK
Get access

Abstract

It is shown that the facile electron field emission from diamond and diamond-like carbon occurs because surface groups such as C-H can produce large changes in electron affinity, so that electric fields from the anode can be focused towards unhydrogenated surface areas of high affinity, the fields ending on negative charges in an underlying depletion layer. The resulting downwards band bending creates very large fields which cause Fowler-Nordheim emission, while not exceeding the breakdown field, which is the highest for any solid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Himpsel, F J, Knapp, J S, VanVechten, J A, Eastman, D E, Phys Rev B 20, 624 (1979).Google Scholar
2 Geis, M W, et al, IEEE Trans ED Let 12, 456 (1991).Google Scholar
3 Zhu, W, Kochanski, G P, Jin, S, Seibles, L, J App] Phys 78, 2707 (1995).Google Scholar
4 Okano, K, Koizumi, S, Silva, S R P, Amaratunga, G A J, Nature 381, 140 (1996).Google Scholar
5 Geis, M W, Twichell, J C, Lyszczarz, T M, J Vac Sci Technol B 14, 2060 (1996).Google Scholar
6 Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Apps Phys Lett 69, 3842 (1996).Google Scholar
7 Zhu, W, presented at Diamond Films '97 (Edinburgh, UK)Google Scholar
8 Amaratunga, G A J, Silva, S R P, App Phys Lett 68, 2529 (1996).Google Scholar
9 Satyanarayana, B S, Hart, A, Milne, W I, Robertson, J, App Phys Lett 71, 1430 (1997).Google Scholar
10 Coil, B F, Jaskie, J E, Markham, J L, Menu, E P, Talin, A A, vonAllmen, P, Mat Res Soc 498 xx (1998)Google Scholar
11 deHeer, W A, et al, Science 270, 1179 (1995).; Adv Mats 9, 87 (1997).Google Scholar
12 Wang, O H, Corrigan, T D, Dai, J Y, Krauss, A R, App Phys Lett 70, 3308 (1997).Google Scholar
13 Obraztsov, A N et al, ISDED-2 (Osaka 1998)Google Scholar
14 Robertson, J, Mat Res Soc Symp Proc 498 xxx (1998)Google Scholar
15 Bandis, C, Pate, B B, App Phys Lett 69, 366 (1996).Google Scholar
16 Groning, O, Kuttel, O, Groning, P, Schlapbach, L, App Phys Lett 71, 2253 (1997).Google Scholar
17 Ristein, J, Schafer, J, Ley, L, Diamond Related Mats 4, 508 (1995).Google Scholar
18 Schafer, J, Ristein, J, Ley, L, J Vac Sci Technol A 15, 408 (1997).Google Scholar
19 Ristein, J, Ley, L, ISDED-2 (1998)Google Scholar
20 Rutter, M J, Robertson, J, Phys Rev B (April 15, 1998)Google Scholar
21 Modinos, A, Surf Sci 42, 205 (1974).Google Scholar
22 Xu, W S, Tzeng, Y, Latham, R V, J Phys D 26, 1776 (1993).Google Scholar
23 Huang, Z H, et al, J Vac Sci Technol 13, 522 (1995).Google Scholar
24 Pate, B, Chang, W Y, Bandis, C, Okano, K, ISDED-2 (Osaka 1998)Google Scholar
25 Collins, A T, Physica B 185, 284 (1993).Google Scholar
26 Davis, R F, J Vac Sci Technol A 1, 829 (1993).Google Scholar