Published online by Cambridge University Press: 10 February 2011
The present authors previously showed that titanium metal, which was exposed to 5.OMNaOH solution at 60°C for 24 h and heat-treated at 600°C for 1 h, spontaneously forms a bonelike apatite layer on its surface in the living body, and tightly bonds to the bone through the apatite layer. In the present study, mechanism of the apatite formation on the bioactive titanium metal was investigated in an acellular simulated body fluid (SBF). A thin sodium titanate layer was formed on the surface of the titanium metal by the NaOH and heat treatments. The sodium titanate layer released Na+ ions via exchange with H3O+ ions in SBF, to form a lot of Ti-OH groups on its surface. The Ti-OH groups first combined with Ca2+ ions in SBF, and then later with PO43- ions to form the apatite. Titania and Na2O-TiO2 gels prepared by a sol-gel method as model substances of the sodium titanate layer on the surface of the titanium metal showed that Ti-OH groups of anatase structure are effective for the apatite nucleation, whereas those of amorphous structure and Na2Ti5O11 crystal are not effective.