Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:44:14.285Z Has data issue: false hasContentIssue false

Mechanics of Interfacial Failure during Thin-Slice Fiber Pushout Tests

Published online by Cambridge University Press:  15 February 2011

D. A. Koss
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, PA 16802
M. N. Kallas
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, PA 16802
J. R. Hellmann
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Interfacial failure along the fiber-matrix interface during fiber push-out tests is examined for conditions where (1) a “thin-slice” specimen geometry is used and (2) matrix plasticity is necessary for large scale fiber displacement. The influence of both test geometry and the combination of thermally and mechanically induced stresses on the potential failure process is discussed. Experimental results are presented which illustrate a range of interfacial failure processes as a consequence of different combinations of specimen geometries, thermally induced residual stresses, and mechanically applied stresses. It is concluded that mode I crack opening and growth induced by specimen bending can be a major contributor to the interfacial failure process. Accurate quantitative measurements of interfacial shear properties must therefore rely on test configurations in which specimen bending is eliminated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Interfacial Phenomena in Composite Material '91, edited by Verpoest, I. and Jones, F. (Butterworth Heinemann, Oxford, 1991).Google Scholar
2. Intermetallic Matrix Composites II, edited by Miracle, D. B., Graves, J. A., and Anton, D. L. (Mater. Res. Soc., Pittsburgh, PA, 273, 1992).Google Scholar
3. Moose, C. A., Koss, D. A., and Hellmann, J. R. in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McKeeking, R., (Mater. Res. Soc. Proc 194, Pittsburgh, PA, 1990) p. 293.Google Scholar
4. Carter, W. C., Butler, E. P., and Fuller, E. R., Scripta Metall. Mater. 25, 579 (1991).CrossRefGoogle Scholar
5. Mackin, T. J., Warren, P. D. and Evans, A. G., Acta Mettal. Mater. 40, 1251 (1992).CrossRefGoogle Scholar
6. Jero, P. D. and Kerans, R. J., Scripta Metall. Mater., in press.Google Scholar
7. Jero, P. D., Kerans, R. J., and Parthasarathy, T. A., J. Am. Ceram. Soc., in press.Google Scholar
8. Eldridge, J. I., this conference proceedings.Google Scholar
9. Koss, D. A., Petrich, R. R., Hellmann, J. R., and Kallas, M. N. in Interfacial Phenomena in Composite Materials, edited by Verpoest, I. and Jones, F. (Butterworth Heinemann, Oxford, 1992), p. 155.Google Scholar
10. Eldridge, J. I. and Brindley, P. K., J. Mat. Sc. Letters B, 1451 (1989).Google Scholar
11. Noebe, R. D., Bowman, R. R., and Eldridge, J. I. in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. 194, Pittsburgh, PA 1991, p. 323.Google Scholar
12. Watson, M. C. and Clyne, T. W., Acta Metall. Mater. 40, 141 (1992).CrossRefGoogle Scholar
13. Warren, P. D., Mackin, T. J., and Evans, A. G., Acta Metall. Mater. 40, 1243 (1992).CrossRefGoogle Scholar
14. Kantzos, P., Eldridge, J., Koss, D. A., and Ghosn, L. J., this conference proceedings.Google Scholar
15. Kallas, M. N., Koss, D. A., Hahn, H. T., and Hellmann, J. R., J. Mater. Sci. (in print).Google Scholar
16. Hutchinson, J. W. and Jensen, H. M., Mech. Mater. 9 139 (1990).CrossRefGoogle Scholar
17. Kerans, R. J. and Parthasarathy, T. A., J. Am. Ceram. Soc. 74, 1585 (1991).CrossRefGoogle Scholar
18. Marshall, D. B., Acta Metall. Mater. 40, 427 (1991 CrossRefGoogle Scholar
19. Liang, C. and Hutchinson, J. W., to be published.Google Scholar
20. Ghosn, L. J., NASA-Lewis Research Center, unpublished research.Google Scholar
21. Kallas, M. N., Penn State University, unpublished research.Google Scholar
22. Morizumi, S., Kikuchi, M., and Nishino, T., J. Mat. Sci. 16, 2137 (1981).CrossRefGoogle Scholar
23. Elssner, G. and Krohn, H., Z. Metallkde. 70, 81 (1979)Google Scholar
24. O'Dowd, N. P., Stout, M. G., and Shih, C. F., Phil. Mag. (in print).Google Scholar
25. Marshall, D. B. and Oliver, W. C.. J. Am. Ceram. Soc. 70, 542 (1987).CrossRefGoogle Scholar
26. Grande, D. H., Mandell, J. F., and Hong, K. C. C., J. Mater. Sci. 23, 311 (1988).CrossRefGoogle Scholar
27. Bright, J. D., Shetty, D. K., Griffior, C. W., and Limaye, S. Y., J. Am. Ceram. Soc. 22, 1891 (1989).CrossRefGoogle Scholar
28. Hsueh, C. H., Acta Metall. Mater. 3, 403 (1990).CrossRefGoogle Scholar
29. Marshall, D. B. and Oliver, W. C., J. Mater. Sci. Eng. A. 126, 95 (1990).CrossRefGoogle Scholar
30. Weihs, T. P. and Nix, W. D., J. Am. Ceram. Soc. 74, 524 (1991).CrossRefGoogle Scholar
31. Hsueh, C. H., Ferber, M. K., and Becher, P. F. J. Mater. Res. 4, 1529 (1989).CrossRefGoogle Scholar
32. Introduction to Ceramics, 2nd Edition, edited by Kingrey, W. D., Bowen, H. K., and Uhlmann, D. R. (John Wiley & Sons, New York, 1976) p. 595.Google Scholar
33. Stephens, J. R. in High Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. 39, Pittsburgh, PA 1985), p. 381.Google Scholar
34. Parthasarathy, T. A., Jero, P. O., and Kerans, R. J., Scripta Metall et Mater. 25, 2457 (1991).CrossRefGoogle Scholar
35. Stout, M. G., Lovato, M. L. Geltmacher, A., Zocco, T. G., and Jervis, T. R., Los Alamos National Laboratory, unpublished research.Google Scholar