Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T16:19:27.236Z Has data issue: false hasContentIssue false

A Mechanical Study of T91 Embrittlement by Liquid Lead-bismuth Eutectic

Published online by Cambridge University Press:  26 February 2011

Zehoua Hamouche
Affiliation:
[email protected], C.E.C.M., Val de marne, 15, Rue Georges Urbain, VITRY SUR SEINE, 94407, France, +33 156703088, +33 146750433
Thierry AUGER
Affiliation:
[email protected], CECM-CNRS UPR2801, 15 Rue Georges Urbain, VITRY SUR SEINE, 94407, France
Ivan GUILLOT
Affiliation:
[email protected], CECM-CNRS UPR2801, 15 Rue Georges Urbain, VITRY SUR SEINE, 94407, France
Get access

Abstract

The susceptibility of liquid metal embrittlement of the T91 martensitic steel is investigated from slow deformation rate (6.67x10-8 m.s-1) to high deformation rate (6.67x10-3 m.s-1), using a Center Cracked in Tension geometry. Brittle fracture, characterized by elongated river cracks on all the fracture surfaces, indicates that T91 is sensitive to the Embrittlement by LBE. This embrittlement effect is very marked at the low deformation rate (~10-5 mm.s-1). A ductile-brittle transition is observed in the high strain rate range investigated. In this transition regime, there is a competition between the growth of dimples and the cracking induced by the liquid metal. Ductility recovery is complete at the highest investigated displacement rate. This dependence of T91/LBE susceptibility to LME on the displacement rate and the brittle to ductile transition at high strain rate is confirmed by a fracture mechanics analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamdar, M.H., Liquid-Metal Embrittlement, Metals Handbook, ASM, Vol.13, 1987 Google Scholar
2. Kamdar, M.H., Progress in material Science, vol 15 part 4, 1973 Google Scholar
3. Gordon, P., Met.Trans.A9, 267, 1978 Google Scholar
4. Nicaise, G., Legris, A., Vogt, J.B., Foct, J., Journal of Nuclear Materials, 296, 256264, 2001 Google Scholar
5. Auger, T., Lorang, G., Scripta Materialia 52, 13231328, 2005 Google Scholar
6. Batra, N.K., See, J.B., King, T.B., J, Weld.. (suppl., October) 417s, 1974 Google Scholar
7. Ueda, I., Miyake, M., Kawamura, M., Trans.Jpn.Weld.Soc. 4, 119, 1973 Google Scholar
8. Lei, Y. and Neale, B.K., Fract, Fatigue. Engng Matre.Struct., Vol.20, 201216, 1997 Google Scholar
9. Jones, R.H., Stress-Corrosion Cracking, Metals Handbook, ASM, Vol.13, 1987 Google Scholar
10. Legris, A.; Nicaise, G.; Vogt, J.-B; Foct, J., Journal of Nuclear Materials, n°301, p.7076, 2002 Google Scholar
11. Dai, Y., Long, B., Groeschel, F., Journal of Nuclear Materials, Vol.356, Issues 1–3, p. 222228, 2006 Google Scholar
12. Rostoker, W., McCanghey, J.M., Markus, H., Embrittlement by Liquid Metals, Reinhold Publishing Corporation, New York, Chapman é é é écanisme de corrosion de l'acier T91 par l eutectique PbBi utilise come matériau de cible de spallation, these de doctorate de l'université paris VI, 2005 Google Scholar
15. Lynch, S.P., Acta metal, Vol.32, N°.1, p.7990, 1984 Google Scholar