No CrossRef data available.
Article contents
Mechanical Response of Diamond at Nanometer Scaes: Diamond Polishing and Atomic Force Microscopy
Published online by Cambridge University Press: 17 March 2011
Abstract
Total energy pseudopotential methods are used to study two different processes involving the mechanical interaction of diamond nanoasperities and diamond surfaces: the wear processes reponsible for diamond polishing, an the mechanical deformation of tip and surface during the operation of the Atomic Force Microscope in contact Mode (CM-AFM). The strong asymmetry in the rate of polishing between different dirctions onthe diamond (110) surface is explained in terms of on atomistic mechanism for nano-groove formation. The pst–polishing surface morphology and the nature of the polishing residue epredicted by this mechanism are consistent with experimental evidence. In the case of CM-FAM, our calculations show that a tip terminated in a single atom is able to sustain forces in excess of 30 nN. The magnitude of the normal force was unexpectedlyfound to be verye similar for th approach on top of an atom or on a hollow position on the surface. This behaviour is due to tip relaxations induced by the interaction with the surface. These forces are also rather insensitive to the chemical nature of the tip apex.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001