Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:24:03.603Z Has data issue: false hasContentIssue false

Mechanical Properties of Ti(C, N) and TiN Thin Films on Cutting Tools Measured by Nanoindentation

Published online by Cambridge University Press:  10 February 2011

E. Lugscheider
Affiliation:
Aachen University of Technology, Materials Science Institute, Aachen, Germany
C. Barimani
Affiliation:
Aachen University of Technology, Materials Science Institute, Aachen, Germany
M. Lake
Affiliation:
Aachen University of Technology, Materials Science Institute, Aachen, Germany
Get access

Abstract

Increasing demands on production processes in terms of performance, reliability and environmental compatibility shape the specification profile for modem wear resistant coating systems. The behavior of PVD coated cutting tools are determined by a large number of characteristics and mechanical properties like hardness, residual stresses, coefficient of friction, density, surface roughness etc. For application of coated tools the knowledge of film hardness and residual stresses are also of a great interest.

For the present work, three different substrate materials, high speed steel, cemented carbides and cermets, were coated with TiN or Ti(C, N). The deposition processes were carried out with the Cathodic Arc Ion Plating process (AIP). During the coating processes, the layer thicknesses were varied. The film hardness and the intrinsic stresses are consequences of deposition conditions, e.g.ion bombardment, external heating during deposition and residual layer thickness after coating. This paper reveals first results of film hardness and intrinsic stresses and shows correlations of these effects with the layer thickness. A NanoindenterTM XP was used to evaluate the film hardnesses. The residual stresses were determined using the stripe bending test.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Knotek, O., Löffler, F. and Krämer, G., Vacuum, 43, (5–7), (1992), p. 645.Google Scholar
2 Knotek, O., Lugscheider, E., Löffler, F., Krämer, G. and Zimmermann, H., Surf. Coat. Technol., 68/69, (1994), p. 489.Google Scholar
3 Lugscheider, E., Knotek, O. and Zimmermann, H. in Processing and Fabrication of Advanced Materials IV edited by Srivatsan, T. S. and Moore, J. J., TMS, Warrendale, USA, 1996.Google Scholar
4 Dumbleton, , in Coatings tribology, edited by K., Holmberg and A., Matthews, Elsevier, New York, 1994, p.86 Google Scholar
5 Taube, K., Untersuchung der mechanischen Eigenschaften von dtinnen Schichten mit einer Ultramikro-Eindruckmethode, Fortschr.-Berichte, VDI Reihe 18, Nr. 102, VDI-Verlag Düsseldorf, Germany, 1991 Google Scholar
6 Rother, B. and Vetter, J., Plasma-Beschichtungsverfahren und Hartstoffschichten, Dt. Verlag für Grundstoffindustrie, Leipzig, Germany, (1992).Google Scholar
7 Bueckle, H. in VDI-Berichte Nr. 160, edited by VDI-Verlag, Dtisseldorf, 1972, p. 524.Google Scholar
8 Page, T. F. and Hainsworth, S. V., Surf. Coat. Technol., 61 (1993), p. 201208.Google Scholar
9 Hainsworth, S. V. and Page, T. F., Surf. Coat. Technol., 68–69 (1994), p. 571575.Google Scholar
10 Doerner, M. F. and Nix, W. D., J. Mater. Res. 1 (1986), p. 601609.Google Scholar
11 Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, (1992), p. 15641583.Google Scholar
12 Stoney, G. G., Proc. R. Soc. London, Ser. A, 82, (1909), p. 172.Google Scholar
13 Grewe, H. and Kolaska, J., Konstitution und Leistungsverhalten von Schneidstoffen, Vorlesungsscriptum an der RWTH Aachen, 1983.Google Scholar
14 Vancoille, E., Celis, J. P. and Roos, J. R., Thin Solid Films, 224, (1993), p. 168176.Google Scholar
15 Thornton, J. A. and Hoffman, , Thin Solid Films, 171, (1998), p. 435444.Google Scholar
16 Haefer, R. A., Oberfliächen- und Dünnschichttechnologie, Teil I, Springer Verlag, Berlin, Germany, (1987).Google Scholar
17 Rossnagel, S. M., Handbook of Plasma Processing Technology, Noyes Publication, New Jersey, 1990.Google Scholar
18 Messier, , Giri, and Roy, , Revised structure zone model, J. Vac. Sci. Technol. A., Vol.2, Apr.- June 1984.Google Scholar
19 Ohrig, , The Materials Science of Thin Films, Academic Press Inc., San Diego, (1991).Google Scholar
20 Knotek, O., Elsing, R., Krämer, G. and Jungbluth, F., On the origin of compressive stress in PVD coatings - an explicative model, Surf. Coat. Technol., 46, (1991), p. 265274.Google Scholar
21 Moll, , Buhl, , Pulker, and Bergmann, , Activated reactive ion plating (ARIP), Surf. Coat. Technol., 39/40, (1989), p. 474486.Google Scholar
22 Mayr, P., Hirsch, T. and Weise, P., Eigenspannungszustände unterschiedliche Schichtsysteme. Abschlußbericht zum Verbundvorhaben: PVD-Beschichtung bei niedrigen Temperaturen und neuen Schichtsysteme, Institut für Werkstofftechnik, 1989–1992, Bremen, Germany.Google Scholar
23 Pharr, G. M. and Oliver, W. C., MRS Bulletin, July 1992.Google Scholar