Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T23:52:40.079Z Has data issue: false hasContentIssue false

Mechanical Properties of Silica Alcogels and Aerogels.

Published online by Cambridge University Press:  28 February 2011

T. Woignier
Affiliation:
L.S.M.V., Université De Montpellier II, 34095 Montpellier Cedex 05, France;
J. Phalippou
Affiliation:
L.S.M.V., Université De Montpellier II, 34095 Montpellier Cedex 05, France;
H. Hdach
Affiliation:
L.S.M.V., Université De Montpellier II, 34095 Montpellier Cedex 05, France;
G.W. Scherer
Affiliation:
E.I. DuPont de Nemours & Co, Central R & D Department, P.O. Box 80356, Wilmington, DE 19880–0356.
Get access

Abstract

The mechanical properties of silica gels (alcogels and aerogels) are measured by three point bending. The elastic moduli (E,G) and the fracture strength (σ) are investigated as functions of the concentration of silicon precursor, the catalysing conditions, and the aging time.

Elastic moduli and strength follow scaling laws as a function of the bulk density of the solid. The scaling exponents are discussed in terms of percolation theory.

The evolution of the mechanical properties is also followed during the steps of the gel to glass transformation:

- hypercritical drying

- oxidation of the organic groups

-densification heat treatment

At each step of the process the increases of the elastic moduli and σ are related to the gel structure. During the hypercritical drying flexible “dead ends” in the network can condense and form new links. The connectivity is also enhanced by the removal of the organic groups creating siloxane bonds. Finally densification leads to a material having mechanical properties identical to those of conventional vitreous silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 - MURTAGH, M.J., GRAHAM, E.K., PANTANO, C.G.. J. Amer. Ceram. Soc. 69(11), 775 (1986).Google Scholar
2 - DUMAS, J., BAZA, S., SERUGHETTI, S.. J. Mater. Sci. Lett. 5, 478 (1986).Google Scholar
3 - SCHERER, G.W., PARDENEK, S.A., SWIATEK, R.M.. J. Non-Cryst. Solids 107, 14 (1988).Google Scholar
4 - SCHERER, G.W.. J. Non-Cryst. Solids, 109, 183 (1989).Google Scholar
5 - GRONAUER, M., KADUR, A., FRICKE, J.. Aerogels (Springer-Verlag), Proceeding in Physics 6, 167 (1986).Google Scholar
6 - WOIGNIER, T., PELOUS, J., VACHER, R., COURTENS, E.. J. Non-Cryst. Solids, 95–96, 1197 (1989).Google Scholar
7 - CALEMCZUK, T., DE GOER, A.M., SALCE, B., MAYNARD, T., ZAREMBOVITCH, A.. Europhys. Lett, 3, 1205 (1987).Google Scholar
8 - WOIGNIER, T., PHALIPPOU, J.. Rev. Phys. Appliquée, 24(C4), 179 (1989).Google Scholar
9 - GROSS, J., REICHENAUER, G., FRICKE, J.. J. Phys D, 21, 1447 (1988).Google Scholar
10 - PELOUS, J., WOIGNIER, T.. Unpublished results.Google Scholar
11 - HDACH, H., WOIGNIER, T., PHALIPPOU, J., SCHERER, G.W.. J. Non-Cryst. Solids, 121, 202 (1990).Google Scholar
12 - QUINSON, J.F., DUMAS, J., SERUGHETTI, J.. J. Phys., 46(C8), 467 (1985).Google Scholar
13 - SCHAEFFER, D.W., BRINKER, C.J., WILCOSON, J.P., WU, D.Q., PHILLIPS, J.C., CHU, B.. in “Better ceramics though chemistry III” edited by Brinker, C.J., Clark, D.E., Ulrich, D.R.. (Mat. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, (1988), p 691.Google Scholar
14 - ILER, R.K.. The Chemistry of Silica, Wiley Interscience, New-York, (1979), p 689.Google Scholar
15 - MERTENS, G., FRIPIAT, J.J.. J. Coll. Inter. Sci. 42(2), 169 (1973).Google Scholar
16 - BRINKER, C.J., KEEFER, K.D., SCHAEFFER, D.W., ASSINK, R.A., KAY, B.D., ASHLEY, C.S.. J. Non-Cryst. Solids, 63, 45 (1984).Google Scholar
17 - WOIGNIER, T., PHALIPPOU, J., VACHER, R.. J. Mater. Res., 4(3), 688 (1989).Google Scholar
18 - SCHERER, G.W.. J. Non-Cryst. Solids, 108, 28 (1989).Google Scholar
19 - SCHERER, G.W.. J. Non-Cryst. Solids, 109, 183 (1989).Google Scholar
20 - PRASSAS, M., PHALIPPOU, J., ZARZYCKI, J.. Glastechnisch. Ber. 56K, 542 (1983).Google Scholar
PHALIPPOU, J., WOIGNIER, T.. Ultrastructure Processing of Ceramics Glasses and Composites. Hench, L.L., Ulrich, D.R. ed, Wiley Intens. Pub. 70 (1983).Google Scholar
PHALIPPOU, J., WOIGNIER, T., PRASSAS, M.. Rev. Phys. Appliquée, 24(C4), 47 (1989).Google Scholar
21 - STAUFFER, D.. J. Chem. Soc. Faraday., 72, 1354 (1972).Google Scholar
22 - GAUTHIER-MANUEL, B., GUYON, E.. J. Phys. Lett. France, 41, L-503 (1980).Google Scholar
23 - TOKITA, M., NIKI, R., NIKICHI, K.. J. Phys. Soc. Jpn, 53, 480 (1984).Google Scholar
24 - ADAM, M., DELSANTI, M., DURAND, D., HILD, G., MUNCH, J.P.. Pure Appl. Chem., 53, 1489 (1981).Google Scholar
25 - TOKITA, M., NIKI, R., NIKICHI, J.. J. Chem. Phys., 83, 2583 (1985).Google Scholar
26 - PEKALA, R.W., KONG, F.M.. Rev. Phys. Appliquée, 24(C4), 179 (1989).Google Scholar
27 - FENG, S., SEN, P.N.. Rev. Phys. Lett., 52, 216 (1984).Google Scholar
28 - KANTOR, Y., WEBMAN, I.. Phys. Rev. Lett., 52, 1891 (1984).Google Scholar
29 - SIERADZKI, K., LI., R. Rev. Letters, 56, 2509 (1986).Google Scholar
30 - SORNETTE, D.. Physical Review B, 36, 8847 (1987).Google Scholar
31 - RAY, P., CHAKRABARTI, B.K.. Preprint.Google Scholar
32 - KIRKPATRICK, S.. in III Condensed Mater, Ballina, R., Maynard, R., Toulouse, G.., eds, North-Holland (1979).Google Scholar
33 - ESSAM, J.W.. Rep. Prog. Phys. 43, 904 (1980).Google Scholar
34 - LOURDIN, P., APPEL, J., PELOUS, J., WOIGNIER, T., VACHER, R.. Rev. Phys. Appliquée, C4(24), 197 (1989).Google Scholar
35 - WINTER, R., HUA, D.W., THIYAGARAJAN, P., JONAS, J.. J. Non-Cryst. Solids, 108, 137 (1989).Google Scholar
36 - KOLB, M., BOTET, R., JULLIEN, J.. Phys. Rev. Lett., 51, 1123 (1983).Google Scholar
37 - MEAKIN, P.. Phys. Rev. Lett., 51, 1119 (1983).Google Scholar
38 - VACHER, R., WOIGNIER, T., PHALIPPOU, J., PELOUS, J., COURTENS, E.. J. Non-Cryst. Solids., 106, 161 (1988).Google Scholar
VACHER, R., WOIGNIER, T., PELOUS, J., COURTENS, E.. Phys. Rev. B, 37(11), 6500 (1988).Google Scholar
39 - HAVLIN, S., NOSSAL, R.. J. Phys. 1, 17, L427 (1984).Google Scholar
40 - HERRMANN, H.J., STANLEY, H.E.. J. Phys. A : Math. Gen., 21, L829 (1988).Google Scholar
41 - MEAKIN, P., MAJID, I., HAVLIN, S., STANLEY, H.E.. J. Phys. A : Math. Gen. 17, L975 (1984).Google Scholar