Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T23:09:00.673Z Has data issue: false hasContentIssue false

Mechanical Properties of Indium Tin Oxide on Polyethylene Napthalate Substrate

Published online by Cambridge University Press:  01 February 2011

Shekhar Bhagat
Affiliation:
[email protected], Arizona State University, School of Materials, 1115 E Lemon Street,, #202, Tempe, AZ, 85281, United States, 4806486921
Y. Zoo
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, USA, United States
H. Han
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, USA, United States
J. Lewis
Affiliation:
[email protected], RTI International Inc., Research Triangle Park, NC, 27709, USA, United States
S. Grego
Affiliation:
[email protected], RTI International Inc., Research Triangle Park, NC, 27709, USA, United States
K. Lee
Affiliation:
[email protected], North Carolina A&T State University, Electrical and Computers Engineering, Greensboro, NC, 27411, USA, United States
S. Iyer
Affiliation:
[email protected], North Carolina A&T State University, Electrical and Computers Engineering, Greensboro, NC, 27411, USA, United States
T. L. Alford
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, USA, United States
Get access

Abstract

This work investigates the mechanical properties of ITO on PEN substrates as a function of processing conditions, including rf power, substrate temperature, and substrate treatment. The best mechanical performance is obtained from high substrate temperature and low rf power. Plasma treatment gases also influence mechanical properties, with mixture of nitrogen and hydrogen gases producing the best results. This work provides an initial understanding of the impact of sputter process conditions on film's mechanical performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Han, H., Adams, D., Mayer, J. W. and Alford, T. L., J. Appl. Phys. 98, 083705 (2005).Google Scholar
[2] Chopra, K. L., Major, S. and Pandya, D. K., Thin Solid Films 102, 1 (1983).Google Scholar
[3] Grego, S., Lewis, J., Vick, E. and Temple, D., J.Soc. Inf. Display 13, 1 (2005).Google Scholar
[4] Macdonald, W. A., J. Mater. Chem. 14, 4 (2004).Google Scholar
[5] Cairns, D. R., W., R. P. II, Sparacin, D. K., Sachsman, S. M., Paine, D. C. and Crawford, G. P., Appl. Phys. Lett. 76, 1425 (2000).Google Scholar
[6] Park, S. K., Han, J. I., Moon, D. G. and Kim, W. K., Jpn. J. Appl. Phys. 42, 623 (2003).Google Scholar
[7] Doolittle, L.R., Nucl. Instrum. Meth. Res. B9, 344 (1985).Google Scholar
[8] JCPDS-International Centre for Diffraction Data Card No. 89–4597, 1998 (Unpublished).Google Scholar
[9] Laterrier, Y., Fisher, C., Médico, L., Demarco, F., Manson, J. –A. E., Bouten, P., DeGoede, J. and Nairn, J. A., 46th Annual Technical Conference Proceedings of Society of Vacuum Coaters (Society of Vacuum Coaters, San Francisco, 2003), p.169.Google Scholar
[10] Kim, D., Han, Y., Cho, J-S. and Koh, S.-K, Thin Solid Films 81, 377 (2000).Google Scholar
[11] Martinu, L., Wertheimer, M.R. and Klemberg-Saphieha, J.E. in Plasma deposition and treatment of polymers, edited by Lee, W.W., D'Agostino, R., Wertheimer, M.R. and Ratner, B.D., (Mat. Res. Symp. Proc. 544, Pittsburgh PA, 1999), p. 251.Google Scholar
[12] Han, Y., Kim, D., Cho, J.-S., Beag, Y.-W. and Koh, S.-K., Thin Solid Films 496, 58 (2006).Google Scholar
[13] Bichler, Ch., Kerbstadt, T., Langowski, H.-C. and Moosheimer, U., Surf. Coatings Technol. 112, 373 (1999).Google Scholar
[14] Rotger, J.C., Pireaux, J.J., Caudano, R., Thorne, N.A., Dunlop, H.M. and Benmalek, M., J. Vac. Sci. Technol. A13, 260 (1995).Google Scholar